mirror of https://github.com/explosion/spaCy.git
161 lines
4.8 KiB
Cython
161 lines
4.8 KiB
Cython
from os import path
|
|
|
|
from .typedefs cimport attr_t
|
|
from .attrs cimport attr_id_t
|
|
from .structs cimport TokenC
|
|
|
|
from cymem.cymem cimport Pool
|
|
from libcpp.vector cimport vector
|
|
|
|
from .attrs cimport LENGTH, ENT_TYPE, ORTH, NORM, LEMMA, LOWER, SHAPE
|
|
from .tokens.doc cimport get_token_attr
|
|
from .tokens.doc cimport Doc
|
|
from .vocab cimport Vocab
|
|
|
|
from libcpp.vector cimport vector
|
|
|
|
try:
|
|
import ujson as json
|
|
except ImportError:
|
|
import json
|
|
|
|
|
|
cdef struct AttrValue:
|
|
attr_id_t attr
|
|
attr_t value
|
|
|
|
|
|
cdef struct Pattern:
|
|
AttrValue* spec
|
|
int length
|
|
|
|
|
|
cdef Pattern* init_pattern(Pool mem, object token_specs, attr_t entity_type) except NULL:
|
|
pattern = <Pattern*>mem.alloc(len(token_specs) + 1, sizeof(Pattern))
|
|
cdef int i
|
|
for i, spec in enumerate(token_specs):
|
|
pattern[i].spec = <AttrValue*>mem.alloc(len(spec), sizeof(AttrValue))
|
|
pattern[i].length = len(spec)
|
|
for j, (attr, value) in enumerate(spec):
|
|
pattern[i].spec[j].attr = attr
|
|
pattern[i].spec[j].value = value
|
|
i = len(token_specs)
|
|
pattern[i].spec = <AttrValue*>mem.alloc(1, sizeof(AttrValue))
|
|
pattern[i].spec[0].attr = ENT_TYPE
|
|
pattern[i].spec[0].value = entity_type
|
|
pattern[i].spec[1].attr = LENGTH
|
|
pattern[i].spec[1].value = len(token_specs)
|
|
pattern[i].length = 0
|
|
return pattern
|
|
|
|
|
|
cdef int match(const Pattern* pattern, const TokenC* token) except -1:
|
|
cdef int i
|
|
for i in range(pattern.length):
|
|
if get_token_attr(token, pattern.spec[i].attr) != pattern.spec[i].value:
|
|
return False
|
|
return True
|
|
|
|
|
|
cdef int is_final(const Pattern* pattern) except -1:
|
|
return (pattern + 1).length == 0
|
|
|
|
|
|
cdef object get_entity(const Pattern* pattern, const TokenC* tokens, int i):
|
|
pattern += 1
|
|
i += 1
|
|
return (pattern.spec[0].value, i - pattern.spec[1].value, i)
|
|
|
|
|
|
def _convert_strings(token_specs, string_store):
|
|
converted = []
|
|
for spec in token_specs:
|
|
converted.append([])
|
|
for attr, value in spec.items():
|
|
if isinstance(attr, basestring):
|
|
attr = map_attr_name(attr)
|
|
if isinstance(value, basestring):
|
|
value = string_store[value]
|
|
converted[-1].append((attr, value))
|
|
return converted
|
|
|
|
|
|
def map_attr_name(attr):
|
|
attr = attr.upper()
|
|
if attr == 'ORTH':
|
|
return ORTH
|
|
elif attr == 'LEMMA':
|
|
return LEMMA
|
|
elif attr == 'LOWER':
|
|
return LOWER
|
|
elif attr == 'SHAPE':
|
|
return SHAPE
|
|
elif attr == 'NORM':
|
|
return NORM
|
|
else:
|
|
raise Exception("TODO: Finish supporting attr mapping %s" % attr)
|
|
|
|
|
|
cdef class Matcher:
|
|
cdef Pool mem
|
|
cdef vector[Pattern*] patterns
|
|
cdef readonly int n_patterns
|
|
|
|
def __init__(self, vocab, patterns):
|
|
self.mem = Pool()
|
|
for entity_key, (etype, attrs, specs) in sorted(patterns.items()):
|
|
self.add(entity_key, etype, attrs, specs)
|
|
|
|
def add(self, entity_key, etype, attrs, specs):
|
|
if isinstance(entity_key, basestring):
|
|
entity_key = vocab.strings[entity_key]
|
|
if isinstance(etype, basestring):
|
|
etype = vocab.strings[etype]
|
|
elif etype is None:
|
|
etype = -1
|
|
# TODO: Do something more clever about multiple patterns for single
|
|
# entity
|
|
for spec in specs:
|
|
spec = _convert_strings(spec, vocab.strings)
|
|
self.patterns.push_back(init_pattern(self.mem, spec, etype))
|
|
|
|
@classmethod
|
|
def from_dir(cls, vocab, data_dir):
|
|
patterns_loc = path.join(data_dir, 'vocab', 'gazetteer.json')
|
|
if path.exists(patterns_loc):
|
|
patterns_data = open(patterns_loc).read()
|
|
patterns = json.loads(patterns_data)
|
|
return cls(vocab, patterns)
|
|
else:
|
|
return cls(vocab, {})
|
|
|
|
def __call__(self, Doc doc):
|
|
cdef vector[Pattern*] partials
|
|
cdef int n_partials = 0
|
|
cdef int q = 0
|
|
cdef int i, token_i
|
|
cdef const TokenC* token
|
|
cdef Pattern* state
|
|
matches = []
|
|
for token_i in range(doc.length):
|
|
token = &doc.data[token_i]
|
|
q = 0
|
|
for i in range(partials.size()):
|
|
state = partials.at(i)
|
|
if match(state, token):
|
|
if is_final(state):
|
|
matches.append(get_entity(state, token, token_i))
|
|
else:
|
|
partials[q] = state + 1
|
|
q += 1
|
|
partials.resize(q)
|
|
for i in range(self.n_patterns):
|
|
state = self.patterns[i]
|
|
if match(state, token):
|
|
if is_final(state):
|
|
matches.append(get_entity(state, token, token_i))
|
|
else:
|
|
partials.push_back(state + 1)
|
|
doc.ents = [(e.label, e.start, e.end) for e in doc.ents] + matches
|
|
return matches
|