spaCy/spacy/vocab.pyx

422 lines
16 KiB
Cython

from __future__ import unicode_literals
from libc.stdio cimport fopen, fclose, fread, fwrite, FILE
from libc.string cimport memset
from libc.stdint cimport int32_t
from libc.stdint cimport uint64_t
import bz2
from os import path
import io
import math
import json
import tempfile
import copy_reg
from .lexeme cimport EMPTY_LEXEME
from .lexeme cimport Lexeme
from .strings cimport hash_string
from .orth cimport word_shape
from .typedefs cimport attr_t
from .cfile cimport CFile
from .lemmatizer import Lemmatizer
from . import attrs
from . import symbols
from cymem.cymem cimport Address
from . import util
from .serialize.packer cimport Packer
from .attrs cimport PROB
DEF MAX_VEC_SIZE = 100000
cdef float[MAX_VEC_SIZE] EMPTY_VEC
memset(EMPTY_VEC, 0, sizeof(EMPTY_VEC))
memset(&EMPTY_LEXEME, 0, sizeof(LexemeC))
EMPTY_LEXEME.repvec = EMPTY_VEC
cdef class Vocab:
'''A map container for a language's LexemeC structs.
'''
@classmethod
def from_dir(cls, data_dir, get_lex_attr=None):
if not path.exists(data_dir):
raise IOError("Directory %s not found -- cannot load Vocab." % data_dir)
if not path.isdir(data_dir):
raise IOError("Path %s is a file, not a dir -- cannot load Vocab." % data_dir)
tag_map = json.load(open(path.join(data_dir, 'tag_map.json')))
lemmatizer = Lemmatizer.from_dir(path.join(data_dir, '..'))
if path.exists(path.join(data_dir, 'serializer.json')):
serializer_freqs = json.load(open(path.join(data_dir, 'serializer.json')))
else:
serializer_freqs = None
cdef Vocab self = cls(get_lex_attr=get_lex_attr, tag_map=tag_map,
lemmatizer=lemmatizer, serializer_freqs=serializer_freqs)
self.load_lexemes(path.join(data_dir, 'strings.txt'), path.join(data_dir, 'lexemes.bin'))
if path.exists(path.join(data_dir, 'vec.bin')):
self.vectors_length = self.load_vectors_from_bin_loc(path.join(data_dir, 'vec.bin'))
return self
def __init__(self, get_lex_attr=None, tag_map=None, lemmatizer=None, serializer_freqs=None):
if tag_map is None:
tag_map = {}
if lemmatizer is None:
lemmatizer = Lemmatizer({}, {}, {})
self.mem = Pool()
self._by_hash = PreshMap()
self._by_orth = PreshMap()
self.strings = StringStore()
# Load strings in a special order, so that we have an onset number for
# the vocabulary. This way, when words are added in order, the orth ID
# is the frequency rank of the word, plus a certain offset. The structural
# strings are loaded first, because the vocab is open-class, and these
# symbols are closed class.
for name in symbols.NAMES + list(sorted(tag_map.keys())):
if name:
_ = self.strings[name]
self.get_lex_attr = get_lex_attr
self.morphology = Morphology(self.strings, tag_map, lemmatizer)
self.serializer_freqs = serializer_freqs
self.length = 1
self._serializer = None
property serializer:
def __get__(self):
if self._serializer is None:
freqs = []
self._serializer = Packer(self, self.serializer_freqs)
return self._serializer
def __len__(self):
"""The current number of lexemes stored."""
return self.length
def __reduce__(self):
tmp_dir = tempfile.mkdtemp()
lex_loc = path.join(tmp_dir, 'lexemes.bin')
str_loc = path.join(tmp_dir, 'strings.txt')
map_loc = path.join(tmp_dir, 'tag_map.json')
self.dump(lex_loc)
self.strings.dump(str_loc)
json.dump(self.morphology.tag_map, open(map_loc, 'w'))
return (unpickle_vocab, (tmp_dir,), None, None)
cdef const LexemeC* get(self, Pool mem, unicode string) except NULL:
'''Get a pointer to a LexemeC from the lexicon, creating a new Lexeme
if necessary, using memory acquired from the given pool. If the pool
is the lexicon's own memory, the lexeme is saved in the lexicon.'''
if string == u'':
return &EMPTY_LEXEME
cdef LexemeC* lex
cdef hash_t key = hash_string(string)
lex = <LexemeC*>self._by_hash.get(key)
cdef size_t addr
if lex != NULL:
if lex.orth != self.strings[string]:
raise LookupError.mismatched_strings(
lex.orth, self.strings[lex.orth], string)
return lex
else:
return self._new_lexeme(mem, string)
cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
'''Get a pointer to a LexemeC from the lexicon, creating a new Lexeme
if necessary, using memory acquired from the given pool. If the pool
is the lexicon's own memory, the lexeme is saved in the lexicon.'''
if orth == 0:
return &EMPTY_LEXEME
cdef LexemeC* lex
lex = <LexemeC*>self._by_orth.get(orth)
if lex != NULL:
return lex
else:
return self._new_lexeme(mem, self.strings[orth])
cdef const LexemeC* _new_lexeme(self, Pool mem, unicode string) except NULL:
cdef hash_t key
cdef bint is_oov = mem is not self.mem
if len(string) < 3:
mem = self.mem
lex = <LexemeC*>mem.alloc(sizeof(LexemeC), 1)
lex.orth = self.strings[string]
lex.length = len(string)
lex.id = self.length
lex.repvec = <float*>mem.alloc(self.vectors_length, sizeof(float))
if self.get_lex_attr is not None:
for attr, func in self.get_lex_attr.items():
value = func(string)
if isinstance(value, unicode):
value = self.strings[value]
if attr == PROB:
lex.prob = value
else:
Lexeme.set_struct_attr(lex, attr, value)
if is_oov:
lex.id = 0
else:
key = hash_string(string)
self._add_lex_to_vocab(key, lex)
assert lex != NULL, string
return lex
cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1:
self._by_hash.set(key, <void*>lex)
self._by_orth.set(lex.orth, <void*>lex)
self.length += 1
def __iter__(self):
cdef attr_t orth
cdef size_t addr
for orth, addr in self._by_orth.items():
yield Lexeme(self, orth)
def __getitem__(self, id_or_string):
'''Retrieve a lexeme, given an int ID or a unicode string. If a previously
unseen unicode string is given, a new lexeme is created and stored.
Args:
id_or_string (int or unicode):
The integer ID of a word, or its unicode string. If an int >= Lexicon.size,
IndexError is raised. If id_or_string is neither an int nor a unicode string,
ValueError is raised.
Returns:
lexeme (Lexeme):
An instance of the Lexeme Python class, with data copied on
instantiation.
'''
cdef attr_t orth
if type(id_or_string) == unicode:
orth = self.strings[id_or_string]
else:
orth = id_or_string
return Lexeme(self, orth)
cdef const TokenC* make_fused_token(self, substrings) except NULL:
cdef int i
tokens = <TokenC*>self.mem.alloc(len(substrings) + 1, sizeof(TokenC))
for i, props in enumerate(substrings):
token = &tokens[i]
# Set the special tokens up to have morphology and lemmas if
# specified, otherwise use the part-of-speech tag (if specified)
token.lex = <LexemeC*>self.get(self.mem, props['F'])
if 'pos' in props:
self.morphology.assign_tag(token, props['pos'])
if 'L' in props:
tokens[i].lemma = self.strings[props['L']]
for feature, value in props.get('morph', {}).items():
self.morphology.assign_feature(&token.morph, feature, value)
return tokens
def dump(self, loc):
if path.exists(loc):
assert not path.isdir(loc)
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
cdef CFile fp = CFile(bytes_loc, 'wb')
cdef size_t st
cdef size_t addr
cdef hash_t key
for key, addr in self._by_hash.items():
lexeme = <LexemeC*>addr
fp.write_from(&lexeme.orth, sizeof(lexeme.orth), 1)
fp.write_from(&lexeme.flags, sizeof(lexeme.flags), 1)
fp.write_from(&lexeme.id, sizeof(lexeme.id), 1)
fp.write_from(&lexeme.length, sizeof(lexeme.length), 1)
fp.write_from(&lexeme.orth, sizeof(lexeme.orth), 1)
fp.write_from(&lexeme.lower, sizeof(lexeme.lower), 1)
fp.write_from(&lexeme.norm, sizeof(lexeme.norm), 1)
fp.write_from(&lexeme.shape, sizeof(lexeme.shape), 1)
fp.write_from(&lexeme.prefix, sizeof(lexeme.prefix), 1)
fp.write_from(&lexeme.suffix, sizeof(lexeme.suffix), 1)
fp.write_from(&lexeme.cluster, sizeof(lexeme.cluster), 1)
fp.write_from(&lexeme.prob, sizeof(lexeme.prob), 1)
fp.write_from(&lexeme.sentiment, sizeof(lexeme.sentiment), 1)
fp.write_from(&lexeme.l2_norm, sizeof(lexeme.l2_norm), 1)
fp.close()
def load_lexemes(self, strings_loc, loc):
self.strings.load(strings_loc)
if not path.exists(loc):
raise IOError('LexemeCs file not found at %s' % loc)
fp = CFile(loc, 'rb')
cdef LexemeC* lexeme
cdef hash_t key
cdef unicode py_str
cdef attr_t orth
assert sizeof(orth) == sizeof(lexeme.orth)
i = 0
while True:
try:
fp.read_into(&orth, 1, sizeof(orth))
except IOError:
break
lexeme = <LexemeC*>self.mem.alloc(sizeof(LexemeC), 1)
# Copy data from the file into the lexeme
fp.read_into(&lexeme.flags, 1, sizeof(lexeme.flags))
fp.read_into(&lexeme.id, 1, sizeof(lexeme.id))
fp.read_into(&lexeme.length, 1, sizeof(lexeme.length))
fp.read_into(&lexeme.orth, 1, sizeof(lexeme.orth))
fp.read_into(&lexeme.lower, 1, sizeof(lexeme.lower))
fp.read_into(&lexeme.norm, 1, sizeof(lexeme.norm))
fp.read_into(&lexeme.shape, 1, sizeof(lexeme.shape))
fp.read_into(&lexeme.prefix, 1, sizeof(lexeme.prefix))
fp.read_into(&lexeme.suffix, 1, sizeof(lexeme.suffix))
fp.read_into(&lexeme.cluster, 1, sizeof(lexeme.cluster))
fp.read_into(&lexeme.prob, 1, sizeof(lexeme.prob))
fp.read_into(&lexeme.sentiment, 1, sizeof(lexeme.sentiment))
fp.read_into(&lexeme.l2_norm, 1, sizeof(lexeme.l2_norm))
lexeme.repvec = EMPTY_VEC
py_str = self.strings[lexeme.orth]
key = hash_string(py_str)
self._by_hash.set(key, lexeme)
self._by_orth.set(lexeme.orth, lexeme)
self.length += 1
i += 1
fp.close()
def load_vectors(self, file_):
cdef LexemeC* lexeme
cdef attr_t orth
cdef int32_t vec_len = -1
for line_num, line in enumerate(file_):
pieces = line.split()
word_str = pieces.pop(0)
if vec_len == -1:
vec_len = len(pieces)
elif vec_len != len(pieces):
raise VectorReadError.mismatched_sizes(file_, line_num,
vec_len, len(pieces))
orth = self.strings[word_str]
lexeme = <LexemeC*><void*>self.get_by_orth(self.mem, orth)
lexeme.repvec = <float*>self.mem.alloc(self.vectors_length, sizeof(float))
for i, val_str in enumerate(pieces):
lexeme.repvec[i] = float(val_str)
return vec_len
def load_vectors_from_bin_loc(self, loc):
cdef CFile file_ = CFile(loc, b'rb')
cdef int32_t word_len
cdef int32_t vec_len = 0
cdef int32_t prev_vec_len = 0
cdef float* vec
cdef Address mem
cdef attr_t string_id
cdef bytes py_word
cdef vector[float*] vectors
cdef int line_num = 0
cdef Pool tmp_mem = Pool()
while True:
try:
file_.read_into(&word_len, sizeof(word_len), 1)
except IOError:
break
file_.read_into(&vec_len, sizeof(vec_len), 1)
if prev_vec_len != 0 and vec_len != prev_vec_len:
raise VectorReadError.mismatched_sizes(loc, line_num,
vec_len, prev_vec_len)
if 0 >= vec_len >= MAX_VEC_SIZE:
raise VectorReadError.bad_size(loc, vec_len)
chars = <char*>file_.alloc_read(tmp_mem, word_len, sizeof(char))
vec = <float*>file_.alloc_read(self.mem, vec_len, sizeof(float))
string_id = self.strings[chars[:word_len]]
while string_id >= vectors.size():
vectors.push_back(EMPTY_VEC)
assert vec != NULL
vectors[string_id] = vec
line_num += 1
cdef LexemeC* lex
cdef size_t lex_addr
cdef int i
for orth, lex_addr in self._by_orth.items():
lex = <LexemeC*>lex_addr
if lex.lower < vectors.size():
lex.repvec = vectors[lex.lower]
for i in range(vec_len):
lex.l2_norm += (lex.repvec[i] * lex.repvec[i])
lex.l2_norm = math.sqrt(lex.l2_norm)
else:
lex.repvec = EMPTY_VEC
return vec_len
def unpickle_vocab(data_dir):
# TODO: This needs fixing --- the trouble is, we can't pickle staticmethods,
# so we need to fiddle with the design of Language a little bit.
from .language import Language
return Vocab.from_dir(data_dir, Language.default_lex_attrs())
copy_reg.constructor(unpickle_vocab)
def write_binary_vectors(in_loc, out_loc):
cdef CFile out_file = CFile(out_loc, 'wb')
cdef Address mem
cdef int32_t word_len
cdef int32_t vec_len
cdef char* chars
with bz2.BZ2File(in_loc, 'r') as file_:
for line in file_:
pieces = line.split()
word = pieces.pop(0)
mem = Address(len(pieces), sizeof(float))
vec = <float*>mem.ptr
for i, val_str in enumerate(pieces):
vec[i] = float(val_str)
word_len = len(word)
vec_len = len(pieces)
out_file.write_from(&word_len, 1, sizeof(word_len))
out_file.write_from(&vec_len, 1, sizeof(vec_len))
chars = <char*>word
out_file.write_from(chars, len(word), sizeof(char))
out_file.write_from(vec, vec_len, sizeof(float))
class LookupError(Exception):
@classmethod
def mismatched_strings(cls, id_, id_string, original_string):
return cls(
"Error fetching a Lexeme from the Vocab. When looking up a string, "
"the lexeme returned had an orth ID that did not match the query string. "
"This means that the cached lexeme structs are mismatched to the "
"string encoding table. The mismatched:\n"
"Query string: {query}\n"
"Orth cached: {orth_str}\n"
"ID of orth: {orth_id}".format(
query=original_string, orth_str=id_string, orth_id=id_)
)
class VectorReadError(Exception):
@classmethod
def mismatched_sizes(cls, loc, line_num, prev_size, curr_size):
return cls(
"Error reading word vectors from %s on line %d.\n"
"All vectors must be the same size.\n"
"Prev size: %d\n"
"Curr size: %d" % (loc, line_num, prev_size, curr_size))
@classmethod
def bad_size(cls, loc, size):
return cls(
"Error reading word vectors from %s.\n"
"Vector size: %d\n"
"Max size: %d\n"
"Min size: 1\n" % (loc, size, MAX_VEC_SIZE))