spaCy/spacy/tests/training/test_pretraining.py

346 lines
11 KiB
Python

from pathlib import Path
import numpy as np
import pytest
import srsly
from spacy.vocab import Vocab
from thinc.api import Config
from ..util import make_tempdir
from ... import util
from ...lang.en import English
from ...training.initialize import init_nlp
from ...training.loop import train
from ...training.pretrain import pretrain
from ...tokens import Doc, DocBin
from ...language import DEFAULT_CONFIG_PRETRAIN_PATH, DEFAULT_CONFIG_PATH
pretrain_string_listener = """
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.width}
[pretraining]
max_epochs = 5
[training]
max_epochs = 5
"""
pretrain_string_internal = """
[nlp]
lang = "en"
pipeline = ["tagger"]
[components]
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[pretraining]
max_epochs = 5
[training]
max_epochs = 5
"""
pretrain_string_vectors = """
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.width}
[pretraining]
max_epochs = 5
[pretraining.objective]
@architectures = spacy.PretrainVectors.v1
maxout_pieces = 3
hidden_size = 300
loss = cosine
[training]
max_epochs = 5
"""
CHAR_OBJECTIVES = [
{},
{"@architectures": "spacy.PretrainCharacters.v1"},
{
"@architectures": "spacy.PretrainCharacters.v1",
"maxout_pieces": 5,
"hidden_size": 42,
"n_characters": 2,
},
]
VECTOR_OBJECTIVES = [
{
"@architectures": "spacy.PretrainVectors.v1",
"maxout_pieces": 3,
"hidden_size": 300,
"loss": "cosine",
},
{
"@architectures": "spacy.PretrainVectors.v1",
"maxout_pieces": 2,
"hidden_size": 200,
"loss": "L2",
},
]
def test_pretraining_default():
"""Test that pretraining defaults to a character objective"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
assert "PretrainCharacters" in filled["pretraining"]["objective"]["@architectures"]
@pytest.mark.parametrize("objective", CHAR_OBJECTIVES)
def test_pretraining_tok2vec_characters(objective):
"""Test that pretraining works with the character objective"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled = filled.interpolate()
assert filled["pretraining"]["component"] == "tok2vec"
pretrain(filled, tmp_dir)
assert Path(tmp_dir / "model0.bin").exists()
assert Path(tmp_dir / "model4.bin").exists()
assert not Path(tmp_dir / "model5.bin").exists()
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
def test_pretraining_tok2vec_vectors_fail(objective):
"""Test that pretraining doesn't works with the vectors objective if there are no static vectors"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled = filled.interpolate()
assert filled["initialize"]["vectors"] is None
with pytest.raises(ValueError):
pretrain(filled, tmp_dir)
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
def test_pretraining_tok2vec_vectors(objective):
"""Test that pretraining works with the vectors objective and static vectors defined"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
nlp_path = write_vectors_model(tmp_dir)
filled["initialize"]["vectors"] = nlp_path
filled = filled.interpolate()
pretrain(filled, tmp_dir)
@pytest.mark.parametrize("config", [pretrain_string_internal, pretrain_string_listener])
def test_pretraining_tagger_tok2vec(config):
"""Test pretraining of the tagger's tok2vec layer (via a listener)"""
config = Config().from_str(pretrain_string_listener)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled["pretraining"]["layer"] = "tok2vec"
filled = filled.interpolate()
pretrain(filled, tmp_dir)
assert Path(tmp_dir / "model0.bin").exists()
assert Path(tmp_dir / "model4.bin").exists()
assert not Path(tmp_dir / "model5.bin").exists()
def test_pretraining_tagger():
"""Test pretraining of the tagger itself will throw an error (not an appropriate tok2vec layer)"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled = filled.interpolate()
with pytest.raises(ValueError):
pretrain(filled, tmp_dir)
def test_pretraining_training():
"""Test that training can use a pretrained Tok2Vec model"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
train_config = util.load_config(DEFAULT_CONFIG_PATH)
filled = train_config.merge(filled)
with make_tempdir() as tmp_dir:
pretrain_dir = tmp_dir / "pretrain"
pretrain_dir.mkdir()
file_path = write_sample_jsonl(pretrain_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled["pretraining"]["layer"] = "tok2vec"
train_dir = tmp_dir / "train"
train_dir.mkdir()
train_path, dev_path = write_sample_training(train_dir)
filled["paths"]["train"] = train_path
filled["paths"]["dev"] = dev_path
filled = filled.interpolate()
P = filled["pretraining"]
nlp_base = init_nlp(filled)
model_base = nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
embed_base = None
for node in model_base.walk():
if node.name == "hashembed":
embed_base = node
pretrain(filled, pretrain_dir)
pretrained_model = Path(pretrain_dir / "model3.bin")
assert pretrained_model.exists()
filled["initialize"]["init_tok2vec"] = str(pretrained_model)
nlp = init_nlp(filled)
model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
embed = None
for node in model.walk():
if node.name == "hashembed":
embed = node
# ensure that the tok2vec weights are actually changed by the pretraining
assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E")))
train(nlp, train_dir)
def write_sample_jsonl(tmp_dir):
data = [
{
"meta": {"id": "1"},
"text": "This is the best TV you'll ever buy!",
"cats": {"pos": 1, "neg": 0},
},
{
"meta": {"id": "2"},
"text": "I wouldn't buy this again.",
"cats": {"pos": 0, "neg": 1},
},
]
file_path = f"{tmp_dir}/text.jsonl"
srsly.write_jsonl(file_path, data)
return file_path
def write_sample_training(tmp_dir):
words = ["The", "players", "start", "."]
tags = ["DT", "NN", "VBZ", "."]
doc = Doc(English().vocab, words=words, tags=tags)
doc_bin = DocBin()
doc_bin.add(doc)
train_path = f"{tmp_dir}/train.spacy"
dev_path = f"{tmp_dir}/dev.spacy"
doc_bin.to_disk(train_path)
doc_bin.to_disk(dev_path)
return train_path, dev_path
def write_vectors_model(tmp_dir):
import numpy
vocab = Vocab()
vector_data = {
"dog": numpy.random.uniform(-1, 1, (300,)),
"cat": numpy.random.uniform(-1, 1, (300,)),
"orange": numpy.random.uniform(-1, 1, (300,))
}
for word, vector in vector_data.items():
vocab.set_vector(word, vector)
nlp_path = tmp_dir / "vectors_model"
nlp = English(vocab)
nlp.to_disk(nlp_path)
return str(nlp_path)