mirror of https://github.com/explosion/spaCy.git
196 lines
5.9 KiB
Python
196 lines
5.9 KiB
Python
#!/usr/bin/env python
|
||
# coding: utf-8
|
||
"""Using the parser to recognise your own semantics
|
||
|
||
spaCy's parser component can be trained to predict any type of tree
|
||
structure over your input text. You can also predict trees over whole documents
|
||
or chat logs, with connections between the sentence-roots used to annotate
|
||
discourse structure. In this example, we'll build a message parser for a common
|
||
"chat intent": finding local businesses. Our message semantics will have the
|
||
following types of relations: ROOT, PLACE, QUALITY, ATTRIBUTE, TIME, LOCATION.
|
||
|
||
"show me the best hotel in berlin"
|
||
('show', 'ROOT', 'show')
|
||
('best', 'QUALITY', 'hotel') --> hotel with QUALITY best
|
||
('hotel', 'PLACE', 'show') --> show PLACE hotel
|
||
('berlin', 'LOCATION', 'hotel') --> hotel with LOCATION berlin
|
||
|
||
Compatible with: spaCy v2.0.0+
|
||
"""
|
||
from __future__ import unicode_literals, print_function
|
||
|
||
import plac
|
||
import random
|
||
from pathlib import Path
|
||
import spacy
|
||
from spacy.util import minibatch, compounding
|
||
|
||
|
||
# training data: texts, heads and dependency labels
|
||
# for no relation, we simply chose an arbitrary dependency label, e.g. '-'
|
||
TRAIN_DATA = [
|
||
(
|
||
"find a cafe with great wifi",
|
||
{
|
||
"heads": [0, 2, 0, 5, 5, 2], # index of token head
|
||
"deps": ["ROOT", "-", "PLACE", "-", "QUALITY", "ATTRIBUTE"],
|
||
},
|
||
),
|
||
(
|
||
"find a hotel near the beach",
|
||
{
|
||
"heads": [0, 2, 0, 5, 5, 2],
|
||
"deps": ["ROOT", "-", "PLACE", "QUALITY", "-", "ATTRIBUTE"],
|
||
},
|
||
),
|
||
(
|
||
"find me the closest gym that's open late",
|
||
{
|
||
"heads": [0, 0, 4, 4, 0, 6, 4, 6, 6],
|
||
"deps": [
|
||
"ROOT",
|
||
"-",
|
||
"-",
|
||
"QUALITY",
|
||
"PLACE",
|
||
"-",
|
||
"-",
|
||
"ATTRIBUTE",
|
||
"TIME",
|
||
],
|
||
},
|
||
),
|
||
(
|
||
"show me the cheapest store that sells flowers",
|
||
{
|
||
"heads": [0, 0, 4, 4, 0, 4, 4, 4], # attach "flowers" to store!
|
||
"deps": ["ROOT", "-", "-", "QUALITY", "PLACE", "-", "-", "PRODUCT"],
|
||
},
|
||
),
|
||
(
|
||
"find a nice restaurant in london",
|
||
{
|
||
"heads": [0, 3, 3, 0, 3, 3],
|
||
"deps": ["ROOT", "-", "QUALITY", "PLACE", "-", "LOCATION"],
|
||
},
|
||
),
|
||
(
|
||
"show me the coolest hostel in berlin",
|
||
{
|
||
"heads": [0, 0, 4, 4, 0, 4, 4],
|
||
"deps": ["ROOT", "-", "-", "QUALITY", "PLACE", "-", "LOCATION"],
|
||
},
|
||
),
|
||
(
|
||
"find a good italian restaurant near work",
|
||
{
|
||
"heads": [0, 4, 4, 4, 0, 4, 5],
|
||
"deps": [
|
||
"ROOT",
|
||
"-",
|
||
"QUALITY",
|
||
"ATTRIBUTE",
|
||
"PLACE",
|
||
"ATTRIBUTE",
|
||
"LOCATION",
|
||
],
|
||
},
|
||
),
|
||
]
|
||
|
||
|
||
@plac.annotations(
|
||
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
||
output_dir=("Optional output directory", "option", "o", Path),
|
||
n_iter=("Number of training iterations", "option", "n", int),
|
||
)
|
||
def main(model=None, output_dir=None, n_iter=15):
|
||
"""Load the model, set up the pipeline and train the parser."""
|
||
if model is not None:
|
||
nlp = spacy.load(model) # load existing spaCy model
|
||
print("Loaded model '%s'" % model)
|
||
else:
|
||
nlp = spacy.blank("en") # create blank Language class
|
||
print("Created blank 'en' model")
|
||
|
||
# We'll use the built-in dependency parser class, but we want to create a
|
||
# fresh instance – just in case.
|
||
if "parser" in nlp.pipe_names:
|
||
nlp.remove_pipe("parser")
|
||
parser = nlp.create_pipe("parser")
|
||
nlp.add_pipe(parser, first=True)
|
||
|
||
for text, annotations in TRAIN_DATA:
|
||
for dep in annotations.get("deps", []):
|
||
parser.add_label(dep)
|
||
|
||
pipe_exceptions = ["parser", "trf_wordpiecer", "trf_tok2vec"]
|
||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
|
||
with nlp.disable_pipes(*other_pipes): # only train parser
|
||
optimizer = nlp.begin_training()
|
||
for itn in range(n_iter):
|
||
random.shuffle(TRAIN_DATA)
|
||
losses = {}
|
||
# batch up the examples using spaCy's minibatch
|
||
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
|
||
for batch in batches:
|
||
texts, annotations = zip(*batch)
|
||
nlp.update(texts, annotations, sgd=optimizer, losses=losses)
|
||
print("Losses", losses)
|
||
|
||
# test the trained model
|
||
test_model(nlp)
|
||
|
||
# save model to output directory
|
||
if output_dir is not None:
|
||
output_dir = Path(output_dir)
|
||
if not output_dir.exists():
|
||
output_dir.mkdir()
|
||
nlp.to_disk(output_dir)
|
||
print("Saved model to", output_dir)
|
||
|
||
# test the saved model
|
||
print("Loading from", output_dir)
|
||
nlp2 = spacy.load(output_dir)
|
||
test_model(nlp2)
|
||
|
||
|
||
def test_model(nlp):
|
||
texts = [
|
||
"find a hotel with good wifi",
|
||
"find me the cheapest gym near work",
|
||
"show me the best hotel in berlin",
|
||
]
|
||
docs = nlp.pipe(texts)
|
||
for doc in docs:
|
||
print(doc.text)
|
||
print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != "-"])
|
||
|
||
|
||
if __name__ == "__main__":
|
||
plac.call(main)
|
||
|
||
# Expected output:
|
||
# find a hotel with good wifi
|
||
# [
|
||
# ('find', 'ROOT', 'find'),
|
||
# ('hotel', 'PLACE', 'find'),
|
||
# ('good', 'QUALITY', 'wifi'),
|
||
# ('wifi', 'ATTRIBUTE', 'hotel')
|
||
# ]
|
||
# find me the cheapest gym near work
|
||
# [
|
||
# ('find', 'ROOT', 'find'),
|
||
# ('cheapest', 'QUALITY', 'gym'),
|
||
# ('gym', 'PLACE', 'find'),
|
||
# ('near', 'ATTRIBUTE', 'gym'),
|
||
# ('work', 'LOCATION', 'near')
|
||
# ]
|
||
# show me the best hotel in berlin
|
||
# [
|
||
# ('show', 'ROOT', 'show'),
|
||
# ('best', 'QUALITY', 'hotel'),
|
||
# ('hotel', 'PLACE', 'show'),
|
||
# ('berlin', 'LOCATION', 'hotel')
|
||
# ]
|