mirror of https://github.com/explosion/spaCy.git
188 lines
6.9 KiB
Python
188 lines
6.9 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import pytest
|
|
|
|
from spacy.lang.en import English
|
|
from spacy.cli.converters import conllu2json, iob2json, conll_ner2json
|
|
from spacy.cli.pretrain import make_docs
|
|
|
|
|
|
def test_cli_converters_conllu2json():
|
|
# from NorNE: https://github.com/ltgoslo/norne/blob/3d23274965f513f23aa48455b28b1878dad23c05/ud/nob/no_bokmaal-ud-dev.conllu
|
|
lines = [
|
|
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tO",
|
|
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tB-PER",
|
|
"3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tI-PER",
|
|
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tO",
|
|
]
|
|
input_data = "\n".join(lines)
|
|
converted = conllu2json(input_data, n_sents=1)
|
|
assert len(converted) == 1
|
|
assert converted[0]["id"] == 0
|
|
assert len(converted[0]["paragraphs"]) == 1
|
|
assert len(converted[0]["paragraphs"][0]["sentences"]) == 1
|
|
sent = converted[0]["paragraphs"][0]["sentences"][0]
|
|
assert len(sent["tokens"]) == 4
|
|
tokens = sent["tokens"]
|
|
assert [t["orth"] for t in tokens] == ["Dommer", "Finn", "Eilertsen", "avstår"]
|
|
assert [t["tag"] for t in tokens] == ["NOUN", "PROPN", "PROPN", "VERB"]
|
|
assert [t["head"] for t in tokens] == [1, 2, -1, 0]
|
|
assert [t["dep"] for t in tokens] == ["appos", "nsubj", "name", "ROOT"]
|
|
assert [t["ner"] for t in tokens] == ["O", "B-PER", "L-PER", "O"]
|
|
|
|
|
|
def test_cli_converters_conllu2json_name_ner_map():
|
|
lines = [
|
|
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tname=O",
|
|
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tSpaceAfter=No|name=B-PER",
|
|
"3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tname=I-PER",
|
|
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No|name=O",
|
|
"5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tname=B-BAD",
|
|
]
|
|
input_data = "\n".join(lines)
|
|
converted = conllu2json(input_data, n_sents=1, ner_map={"PER": "PERSON", "BAD": ""})
|
|
assert len(converted) == 1
|
|
assert converted[0]["id"] == 0
|
|
assert len(converted[0]["paragraphs"]) == 1
|
|
assert converted[0]["paragraphs"][0]["raw"] == "Dommer FinnEilertsen avstår."
|
|
assert len(converted[0]["paragraphs"][0]["sentences"]) == 1
|
|
sent = converted[0]["paragraphs"][0]["sentences"][0]
|
|
assert len(sent["tokens"]) == 5
|
|
tokens = sent["tokens"]
|
|
assert [t["orth"] for t in tokens] == ["Dommer", "Finn", "Eilertsen", "avstår", "."]
|
|
assert [t["tag"] for t in tokens] == ["NOUN", "PROPN", "PROPN", "VERB", "PUNCT"]
|
|
assert [t["head"] for t in tokens] == [1, 2, -1, 0, -1]
|
|
assert [t["dep"] for t in tokens] == ["appos", "nsubj", "name", "ROOT", "punct"]
|
|
assert [t["ner"] for t in tokens] == ["O", "B-PERSON", "L-PERSON", "O", "O"]
|
|
|
|
|
|
def test_cli_converters_iob2json():
|
|
lines = [
|
|
"I|O like|O London|I-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O",
|
|
"I|O like|O London|B-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O",
|
|
"I|PRP|O like|VBP|O London|NNP|I-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O",
|
|
"I|PRP|O like|VBP|O London|NNP|B-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O",
|
|
]
|
|
input_data = "\n".join(lines)
|
|
converted = iob2json(input_data, n_sents=10)
|
|
assert len(converted) == 1
|
|
assert converted[0]["id"] == 0
|
|
assert len(converted[0]["paragraphs"]) == 1
|
|
assert len(converted[0]["paragraphs"][0]["sentences"]) == 4
|
|
for i in range(0, 4):
|
|
sent = converted[0]["paragraphs"][0]["sentences"][i]
|
|
assert len(sent["tokens"]) == 8
|
|
tokens = sent["tokens"]
|
|
# fmt: off
|
|
assert [t["orth"] for t in tokens] == ["I", "like", "London", "and", "New", "York", "City", "."]
|
|
assert [t["ner"] for t in tokens] == ["O", "O", "U-GPE", "O", "B-GPE", "I-GPE", "L-GPE", "O"]
|
|
# fmt: on
|
|
|
|
|
|
def test_cli_converters_conll_ner2json():
|
|
lines = [
|
|
"-DOCSTART- -X- O O",
|
|
"",
|
|
"I\tO",
|
|
"like\tO",
|
|
"London\tB-GPE",
|
|
"and\tO",
|
|
"New\tB-GPE",
|
|
"York\tI-GPE",
|
|
"City\tI-GPE",
|
|
".\tO",
|
|
"",
|
|
"I O",
|
|
"like O",
|
|
"London B-GPE",
|
|
"and O",
|
|
"New B-GPE",
|
|
"York I-GPE",
|
|
"City I-GPE",
|
|
". O",
|
|
"",
|
|
"I PRP O",
|
|
"like VBP O",
|
|
"London NNP B-GPE",
|
|
"and CC O",
|
|
"New NNP B-GPE",
|
|
"York NNP I-GPE",
|
|
"City NNP I-GPE",
|
|
". . O",
|
|
"",
|
|
"I PRP _ O",
|
|
"like VBP _ O",
|
|
"London NNP _ B-GPE",
|
|
"and CC _ O",
|
|
"New NNP _ B-GPE",
|
|
"York NNP _ I-GPE",
|
|
"City NNP _ I-GPE",
|
|
". . _ O",
|
|
"",
|
|
"I\tPRP\t_\tO",
|
|
"like\tVBP\t_\tO",
|
|
"London\tNNP\t_\tB-GPE",
|
|
"and\tCC\t_\tO",
|
|
"New\tNNP\t_\tB-GPE",
|
|
"York\tNNP\t_\tI-GPE",
|
|
"City\tNNP\t_\tI-GPE",
|
|
".\t.\t_\tO",
|
|
]
|
|
input_data = "\n".join(lines)
|
|
converted = conll_ner2json(input_data, n_sents=10)
|
|
assert len(converted) == 1
|
|
assert converted[0]["id"] == 0
|
|
assert len(converted[0]["paragraphs"]) == 1
|
|
assert len(converted[0]["paragraphs"][0]["sentences"]) == 5
|
|
for i in range(0, 5):
|
|
sent = converted[0]["paragraphs"][0]["sentences"][i]
|
|
assert len(sent["tokens"]) == 8
|
|
tokens = sent["tokens"]
|
|
# fmt: off
|
|
assert [t["orth"] for t in tokens] == ["I", "like", "London", "and", "New", "York", "City", "."]
|
|
assert [t["ner"] for t in tokens] == ["O", "O", "U-GPE", "O", "B-GPE", "I-GPE", "L-GPE", "O"]
|
|
# fmt: on
|
|
|
|
|
|
def test_pretrain_make_docs():
|
|
nlp = English()
|
|
|
|
valid_jsonl_text = {"text": "Some text"}
|
|
docs, skip_count = make_docs(nlp, [valid_jsonl_text], 1, 10)
|
|
assert len(docs) == 1
|
|
assert skip_count == 0
|
|
|
|
valid_jsonl_tokens = {"tokens": ["Some", "tokens"]}
|
|
docs, skip_count = make_docs(nlp, [valid_jsonl_tokens], 1, 10)
|
|
assert len(docs) == 1
|
|
assert skip_count == 0
|
|
|
|
invalid_jsonl_type = 0
|
|
with pytest.raises(TypeError):
|
|
make_docs(nlp, [invalid_jsonl_type], 1, 100)
|
|
|
|
invalid_jsonl_key = {"invalid": "Does not matter"}
|
|
with pytest.raises(ValueError):
|
|
make_docs(nlp, [invalid_jsonl_key], 1, 100)
|
|
|
|
empty_jsonl_text = {"text": ""}
|
|
docs, skip_count = make_docs(nlp, [empty_jsonl_text], 1, 10)
|
|
assert len(docs) == 0
|
|
assert skip_count == 1
|
|
|
|
empty_jsonl_tokens = {"tokens": []}
|
|
docs, skip_count = make_docs(nlp, [empty_jsonl_tokens], 1, 10)
|
|
assert len(docs) == 0
|
|
assert skip_count == 1
|
|
|
|
too_short_jsonl = {"text": "This text is not long enough"}
|
|
docs, skip_count = make_docs(nlp, [too_short_jsonl], 10, 15)
|
|
assert len(docs) == 0
|
|
assert skip_count == 0
|
|
|
|
too_long_jsonl = {"text": "This text contains way too much tokens for this test"}
|
|
docs, skip_count = make_docs(nlp, [too_long_jsonl], 1, 5)
|
|
assert len(docs) == 0
|
|
assert skip_count == 0
|