spaCy/spacy/tests/training/test_training.py

1057 lines
42 KiB
Python

import random
import numpy
import pytest
import srsly
from spacy.lang.en import English
from spacy.tokens import Doc, DocBin
from spacy.training import Alignment, Corpus, Example, biluo_tags_to_offsets
from spacy.training import biluo_tags_to_spans, docs_to_json, iob_to_biluo
from spacy.training import offsets_to_biluo_tags
from spacy.training.align import get_alignments
from spacy.training.converters import json_to_docs
from spacy.util import get_words_and_spaces, load_model_from_path, minibatch
from spacy.util import load_config_from_str
from thinc.api import compounding
from ..util import make_tempdir
@pytest.fixture
def doc():
nlp = English() # make sure we get a new vocab every time
# fmt: off
words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
morphs = ["NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin",
"", "NounType=prop|Number=sing", "NounType=prop|Number=sing", "",
"NounType=prop|Number=sing", "PunctType=peri"]
# head of '.' is intentionally nonprojective for testing
heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5]
deps = ["poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
lemmas = ["Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", "."]
ents = ["O"] * len(words)
ents[0] = "B-PERSON"
ents[1] = "I-PERSON"
ents[5] = "B-LOC"
ents[6] = "I-LOC"
ents[8] = "B-GPE"
cats = {"TRAVEL": 1.0, "BAKING": 0.0}
# fmt: on
doc = Doc(
nlp.vocab,
words=words,
tags=tags,
pos=pos,
morphs=morphs,
heads=heads,
deps=deps,
lemmas=lemmas,
ents=ents,
)
doc.cats = cats
return doc
@pytest.fixture()
def merged_dict():
return {
"ids": [1, 2, 3, 4, 5, 6, 7],
"words": ["Hi", "there", "everyone", "It", "is", "just", "me"],
"spaces": [True, True, True, True, True, True, False],
"tags": ["INTJ", "ADV", "PRON", "PRON", "AUX", "ADV", "PRON"],
"sent_starts": [1, 0, 0, 1, 0, 0, 0],
}
@pytest.fixture
def vocab():
nlp = English()
return nlp.vocab
@pytest.mark.issue(999)
def test_issue999():
"""Test that adding entities and resuming training works passably OK.
There are two issues here:
1) We have to re-add labels. This isn't very nice.
2) There's no way to set the learning rate for the weight update, so we
end up out-of-scale, causing it to learn too fast.
"""
TRAIN_DATA = [
["hey", []],
["howdy", []],
["hey there", []],
["hello", []],
["hi", []],
["i'm looking for a place to eat", []],
["i'm looking for a place in the north of town", [(31, 36, "LOCATION")]],
["show me chinese restaurants", [(8, 15, "CUISINE")]],
["show me chines restaurants", [(8, 14, "CUISINE")]],
]
nlp = English()
ner = nlp.add_pipe("ner")
for _, offsets in TRAIN_DATA:
for start, end, label in offsets:
ner.add_label(label)
nlp.initialize()
for itn in range(20):
random.shuffle(TRAIN_DATA)
for raw_text, entity_offsets in TRAIN_DATA:
example = Example.from_dict(
nlp.make_doc(raw_text), {"entities": entity_offsets}
)
nlp.update([example])
with make_tempdir() as model_dir:
nlp.to_disk(model_dir)
nlp2 = load_model_from_path(model_dir)
for raw_text, entity_offsets in TRAIN_DATA:
doc = nlp2(raw_text)
ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents}
for start, end, label in entity_offsets:
if (start, end) in ents:
assert ents[(start, end)] == label
break
else:
if entity_offsets:
raise Exception(ents)
@pytest.mark.issue(4402)
def test_issue4402():
json_data = {
"id": 0,
"paragraphs": [
{
"raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.",
"sentences": [
{
"tokens": [
{"id": 0, "orth": "How", "ner": "O"},
{"id": 1, "orth": "should", "ner": "O"},
{"id": 2, "orth": "I", "ner": "O"},
{"id": 3, "orth": "cook", "ner": "O"},
{"id": 4, "orth": "bacon", "ner": "O"},
{"id": 5, "orth": "in", "ner": "O"},
{"id": 6, "orth": "an", "ner": "O"},
{"id": 7, "orth": "oven", "ner": "O"},
{"id": 8, "orth": "?", "ner": "O"},
],
"brackets": [],
},
{
"tokens": [
{"id": 9, "orth": "\n", "ner": "O"},
{"id": 10, "orth": "I", "ner": "O"},
{"id": 11, "orth": "'ve", "ner": "O"},
{"id": 12, "orth": "heard", "ner": "O"},
{"id": 13, "orth": "of", "ner": "O"},
{"id": 14, "orth": "people", "ner": "O"},
{"id": 15, "orth": "cooking", "ner": "O"},
{"id": 16, "orth": "bacon", "ner": "O"},
{"id": 17, "orth": "in", "ner": "O"},
{"id": 18, "orth": "an", "ner": "O"},
{"id": 19, "orth": "oven", "ner": "O"},
{"id": 20, "orth": ".", "ner": "O"},
],
"brackets": [],
},
],
"cats": [
{"label": "baking", "value": 1.0},
{"label": "not_baking", "value": 0.0},
],
},
{
"raw": "What is the difference between white and brown eggs?\n",
"sentences": [
{
"tokens": [
{"id": 0, "orth": "What", "ner": "O"},
{"id": 1, "orth": "is", "ner": "O"},
{"id": 2, "orth": "the", "ner": "O"},
{"id": 3, "orth": "difference", "ner": "O"},
{"id": 4, "orth": "between", "ner": "O"},
{"id": 5, "orth": "white", "ner": "O"},
{"id": 6, "orth": "and", "ner": "O"},
{"id": 7, "orth": "brown", "ner": "O"},
{"id": 8, "orth": "eggs", "ner": "O"},
{"id": 9, "orth": "?", "ner": "O"},
],
"brackets": [],
},
{"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []},
],
"cats": [
{"label": "baking", "value": 0.0},
{"label": "not_baking", "value": 1.0},
],
},
],
}
nlp = English()
attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"]
with make_tempdir() as tmpdir:
output_file = tmpdir / "test4402.spacy"
docs = json_to_docs([json_data])
data = DocBin(docs=docs, attrs=attrs).to_bytes()
with output_file.open("wb") as file_:
file_.write(data)
reader = Corpus(output_file)
train_data = list(reader(nlp))
assert len(train_data) == 2
split_train_data = []
for eg in train_data:
split_train_data.extend(eg.split_sents())
assert len(split_train_data) == 4
CONFIG_7029 = """
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v1"
[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = ${components.tok2vec.model.encode:width}
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = false
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
width = 96
depth = 4
window_size = 1
maxout_pieces = 3
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode:width}
upstream = "*"
"""
@pytest.mark.issue(7029)
def test_issue7029():
"""Test that an empty document doesn't mess up an entire batch."""
TRAIN_DATA = [
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
("Eat blue ham", {"tags": ["V", "J", "N"]}),
]
nlp = English.from_config(load_config_from_str(CONFIG_7029))
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
docs1 = list(nlp.pipe(texts, batch_size=1))
docs2 = list(nlp.pipe(texts, batch_size=4))
assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
def test_gold_biluo_U(en_vocab):
words = ["I", "flew", "to", "London", "."]
spaces = [True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to London"), "LOC")]
tags = offsets_to_biluo_tags(doc, entities)
assert tags == ["O", "O", "O", "U-LOC", "O"]
def test_gold_biluo_BL(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "."]
spaces = [True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
tags = offsets_to_biluo_tags(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
def test_gold_biluo_BIL(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
tags = offsets_to_biluo_tags(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
def test_gold_biluo_overlap(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
(len("I flew to "), len("I flew to San Francisco"), "LOC"),
]
with pytest.raises(ValueError):
offsets_to_biluo_tags(doc, entities)
def test_gold_biluo_misalign(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley."]
spaces = [True, True, True, True, True, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
with pytest.warns(UserWarning):
tags = offsets_to_biluo_tags(doc, entities)
assert tags == ["O", "O", "O", "-", "-", "-"]
def test_example_constructor(en_vocab):
words = ["I", "like", "stuff"]
tags = ["NOUN", "VERB", "NOUN"]
tag_ids = [en_vocab.strings.add(tag) for tag in tags]
predicted = Doc(en_vocab, words=words)
reference = Doc(en_vocab, words=words)
reference = reference.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
example = Example(predicted, reference)
tags = example.get_aligned("TAG", as_string=True)
assert tags == ["NOUN", "VERB", "NOUN"]
def test_example_from_dict_tags(en_vocab):
words = ["I", "like", "stuff"]
tags = ["NOUN", "VERB", "NOUN"]
predicted = Doc(en_vocab, words=words)
example = Example.from_dict(predicted, {"TAGS": tags})
tags = example.get_aligned("TAG", as_string=True)
assert tags == ["NOUN", "VERB", "NOUN"]
def test_example_from_dict_no_ner(en_vocab):
words = ["a", "b", "c", "d"]
spaces = [True, True, False, True]
predicted = Doc(en_vocab, words=words, spaces=spaces)
example = Example.from_dict(predicted, {"words": words})
ner_tags = example.get_aligned_ner()
assert ner_tags == [None, None, None, None]
def test_example_from_dict_some_ner(en_vocab):
words = ["a", "b", "c", "d"]
spaces = [True, True, False, True]
predicted = Doc(en_vocab, words=words, spaces=spaces)
example = Example.from_dict(
predicted, {"words": words, "entities": ["U-LOC", None, None, None]}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["U-LOC", None, None, None]
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_json_to_docs_no_ner(en_vocab):
data = [
{
"id": 1,
"paragraphs": [
{
"sentences": [
{
"tokens": [
{"dep": "nn", "head": 1, "tag": "NNP", "orth": "Ms."},
{
"dep": "nsubj",
"head": 1,
"tag": "NNP",
"orth": "Haag",
},
{
"dep": "ROOT",
"head": 0,
"tag": "VBZ",
"orth": "plays",
},
{
"dep": "dobj",
"head": -1,
"tag": "NNP",
"orth": "Elianti",
},
{"dep": "punct", "head": -2, "tag": ".", "orth": "."},
]
}
]
}
],
}
]
docs = list(json_to_docs(data))
assert len(docs) == 1
for doc in docs:
assert not doc.has_annotation("ENT_IOB")
for token in doc:
assert token.ent_iob == 0
eg = Example(
Doc(
doc.vocab,
words=[w.text for w in doc],
spaces=[bool(w.whitespace_) for w in doc],
),
doc,
)
ner_tags = eg.get_aligned_ner()
assert ner_tags == [None, None, None, None, None]
def test_split_sentences(en_vocab):
# fmt: off
words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"]
gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun"]
sent_starts = [True, False, False, False, False, False, True, False, False, False]
# fmt: on
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
assert example.text == "I flew to San Francisco Valley had loads of fun "
split_examples = example.split_sents()
assert len(split_examples) == 2
assert split_examples[0].text == "I flew to San Francisco Valley "
assert split_examples[1].text == "had loads of fun "
# fmt: off
words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"]
gold_words = ["I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun"]
sent_starts = [True, False, False, False, False, True, False, False]
# fmt: on
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
assert example.text == "I flew to San Francisco Valley had loads of fun "
split_examples = example.split_sents()
assert len(split_examples) == 2
assert split_examples[0].text == "I flew to San Francisco Valley "
assert split_examples[1].text == "had loads of fun "
def test_gold_biluo_one_to_many(en_vocab, en_tokenizer):
words = ["Mr and ", "Mrs Smith", "flew to", "San Francisco Valley", "."]
spaces = [True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr and Mrs Smith flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr and Mrs Smith", "flew", "to", "San", "Francisco", "Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "U-LOC", "O"]
entities = [
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
# fmt: off
gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
# fmt: on
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "U-PERSON", "O", "U-LOC", "O"]
entities = [
(len("Mr and "), len("Mr and Mrs"), "PERSON"), # "Mrs" is a Person
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
# fmt: off
gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
# fmt: on
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", None, "O", "U-LOC", "O"]
def test_gold_biluo_many_to_one(en_vocab, en_tokenizer):
words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr and Mrs Smith flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr and Mrs Smith", "flew to", "San Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
entities = [
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
gold_words = ["Mr and", "Mrs Smith", "flew to", "San Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
expected = ["O", "B-PERSON", "L-PERSON", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
assert ner_tags == expected
def test_gold_biluo_misaligned(en_vocab, en_tokenizer):
words = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr and Mrs Smith flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr", "and Mrs Smith", "flew to", "San", "Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
entities = [
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
gold_words = ["Mr and", "Mrs Smith", "flew to", "San", "Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == [None, None, "O", "O", "B-LOC", "L-LOC", "O"]
def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer):
# additional whitespace tokens in GoldParse words
words, spaces = get_words_and_spaces(
["I", "flew", "to", "San Francisco", "Valley", "."],
"I flew to San Francisco Valley.",
)
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "I flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."]
gold_spaces = [True, True, False, True, False, False]
example = Example.from_dict(
doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
def test_gold_biluo_4791(en_vocab, en_tokenizer):
doc = en_tokenizer("I'll return the A54 amount")
gold_words = ["I", "'ll", "return", "the", "A", "54", "amount"]
gold_spaces = [False, True, True, True, False, True, False]
entities = [(16, 19, "MONEY")]
example = Example.from_dict(
doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "U-MONEY", "O"]
doc = en_tokenizer("I'll return the $54 amount")
gold_words = ["I", "'ll", "return", "the", "$", "54", "amount"]
gold_spaces = [False, True, True, True, False, True, False]
entities = [(16, 19, "MONEY")]
example = Example.from_dict(
doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "B-MONEY", "L-MONEY", "O"]
def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
text = "I flew to Silicon Valley via London."
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
doc = en_tokenizer(text)
biluo_tags_converted = offsets_to_biluo_tags(doc, offsets)
assert biluo_tags_converted == biluo_tags
offsets_converted = biluo_tags_to_offsets(doc, biluo_tags)
offsets_converted = [ent for ent in offsets if ent[2]]
assert offsets_converted == offsets
def test_biluo_spans(en_tokenizer):
doc = en_tokenizer("I flew to Silicon Valley via London.")
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
spans = biluo_tags_to_spans(doc, biluo_tags)
spans = [span for span in spans if span.label_]
assert len(spans) == 2
assert spans[0].text == "Silicon Valley"
assert spans[0].label_ == "LOC"
assert spans[1].text == "London"
assert spans[1].label_ == "GPE"
def test_aligned_spans_y2x(en_vocab, en_tokenizer):
words = ["Mr and Mrs Smith", "flew", "to", "San Francisco Valley", "."]
spaces = [True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr and Mrs Smith flew to "
entities = [
(0, len("Mr and Mrs Smith"), "PERSON"),
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
# fmt: off
tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
# fmt: on
example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
ents_ref = example.reference.ents
assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4), (6, 9)]
ents_y2x = example.get_aligned_spans_y2x(ents_ref)
assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1), (3, 4)]
def test_aligned_spans_x2y(en_vocab, en_tokenizer):
text = "Mr and Mrs Smith flew to San Francisco Valley"
nlp = English()
patterns = [
{"label": "PERSON", "pattern": "Mr and Mrs Smith"},
{"label": "LOC", "pattern": "San Francisco Valley"},
]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
doc = nlp(text)
assert [(ent.start, ent.end) for ent in doc.ents] == [(0, 4), (6, 9)]
prefix = "Mr and Mrs Smith flew to "
entities = [
(0, len("Mr and Mrs Smith"), "PERSON"),
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley"]
example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
assert [(ent.start, ent.end) for ent in example.reference.ents] == [(0, 2), (4, 6)]
# Ensure that 'get_aligned_spans_x2y' has the aligned entities correct
ents_pred = example.predicted.ents
assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4), (6, 9)]
ents_x2y = example.get_aligned_spans_x2y(ents_pred)
assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2), (4, 6)]
def test_aligned_spans_y2x_overlap(en_vocab, en_tokenizer):
text = "I flew to San Francisco Valley"
nlp = English()
doc = nlp(text)
# the reference doc has overlapping spans
gold_doc = nlp.make_doc(text)
spans = []
prefix = "I flew to "
spans.append(
gold_doc.char_span(len(prefix), len(prefix + "San Francisco"), label="CITY")
)
spans.append(
gold_doc.char_span(
len(prefix), len(prefix + "San Francisco Valley"), label="VALLEY"
)
)
spans_key = "overlap_ents"
gold_doc.spans[spans_key] = spans
example = Example(doc, gold_doc)
spans_gold = example.reference.spans[spans_key]
assert [(ent.start, ent.end) for ent in spans_gold] == [(3, 5), (3, 6)]
# Ensure that 'get_aligned_spans_y2x' has the aligned entities correct
spans_y2x_no_overlap = example.get_aligned_spans_y2x(
spans_gold, allow_overlap=False
)
assert [(ent.start, ent.end) for ent in spans_y2x_no_overlap] == [(3, 5)]
spans_y2x_overlap = example.get_aligned_spans_y2x(spans_gold, allow_overlap=True)
assert [(ent.start, ent.end) for ent in spans_y2x_overlap] == [(3, 5), (3, 6)]
def test_gold_ner_missing_tags(en_tokenizer):
doc = en_tokenizer("I flew to Silicon Valley via London.")
biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
example = Example.from_dict(doc, {"entities": biluo_tags})
assert example.get_aligned("ENT_IOB") == [0, 2, 2, 3, 1, 2, 3, 2]
def test_projectivize(en_tokenizer):
doc = en_tokenizer("He pretty quickly walks away")
heads = [3, 2, 3, 0, 2]
deps = ["dep"] * len(heads)
example = Example.from_dict(doc, {"heads": heads, "deps": deps})
proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False)
assert proj_heads == [3, 2, 3, 0, 3]
assert nonproj_heads == [3, 2, 3, 0, 2]
def test_iob_to_biluo():
good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"]
converted_biluo = iob_to_biluo(good_iob)
assert good_biluo == converted_biluo
with pytest.raises(ValueError):
iob_to_biluo(bad_iob)
def test_roundtrip_docs_to_docbin(doc):
text = doc.text
idx = [t.idx for t in doc]
tags = [t.tag_ for t in doc]
pos = [t.pos_ for t in doc]
morphs = [str(t.morph) for t in doc]
lemmas = [t.lemma_ for t in doc]
deps = [t.dep_ for t in doc]
heads = [t.head.i for t in doc]
cats = doc.cats
ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
# roundtrip to DocBin
with make_tempdir() as tmpdir:
# use a separate vocab to test that all labels are added
reloaded_nlp = English()
json_file = tmpdir / "roundtrip.json"
srsly.write_json(json_file, [docs_to_json(doc)])
output_file = tmpdir / "roundtrip.spacy"
DocBin(docs=[doc]).to_disk(output_file)
reader = Corpus(output_file)
reloaded_examples = list(reader(reloaded_nlp))
assert len(doc) == sum(len(eg) for eg in reloaded_examples)
reloaded_example = reloaded_examples[0]
assert text == reloaded_example.reference.text
assert idx == [t.idx for t in reloaded_example.reference]
assert tags == [t.tag_ for t in reloaded_example.reference]
assert pos == [t.pos_ for t in reloaded_example.reference]
assert morphs == [str(t.morph) for t in reloaded_example.reference]
assert lemmas == [t.lemma_ for t in reloaded_example.reference]
assert deps == [t.dep_ for t in reloaded_example.reference]
assert heads == [t.head.i for t in reloaded_example.reference]
assert ents == [
(e.start_char, e.end_char, e.label_) for e in reloaded_example.reference.ents
]
assert "TRAVEL" in reloaded_example.reference.cats
assert "BAKING" in reloaded_example.reference.cats
assert cats["TRAVEL"] == reloaded_example.reference.cats["TRAVEL"]
assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"]
def test_docbin_user_data_serialized(doc):
doc.user_data["check"] = True
nlp = English()
with make_tempdir() as tmpdir:
output_file = tmpdir / "userdata.spacy"
DocBin(docs=[doc], store_user_data=True).to_disk(output_file)
reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab)
reloaded_doc = list(reloaded_docs)[0]
assert reloaded_doc.user_data["check"] == True
def test_docbin_user_data_not_serialized(doc):
# this isn't serializable, but that shouldn't cause an error
doc.user_data["check"] = set()
nlp = English()
with make_tempdir() as tmpdir:
output_file = tmpdir / "userdata.spacy"
DocBin(docs=[doc], store_user_data=False).to_disk(output_file)
reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab)
reloaded_doc = list(reloaded_docs)[0]
assert "check" not in reloaded_doc.user_data
@pytest.mark.parametrize(
"tokens_a,tokens_b,expected",
[
(["a", "b", "c"], ["ab", "c"], ([[0], [0], [1]], [[0, 1], [2]])),
(
["a", "b", '"', "c"],
['ab"', "c"],
([[0], [0], [0], [1]], [[0, 1, 2], [3]]),
),
(["a", "bc"], ["ab", "c"], ([[0], [0, 1]], [[0, 1], [1]])),
(
["ab", "c", "d"],
["a", "b", "cd"],
([[0, 1], [2], [2]], [[0], [0], [1, 2]]),
),
(
["a", "b", "cd"],
["a", "b", "c", "d"],
([[0], [1], [2, 3]], [[0], [1], [2], [2]]),
),
([" ", "a"], ["a"], ([[], [0]], [[1]])),
(
["a", "''", "'", ","],
["a'", "''", ","],
([[0], [0, 1], [1], [2]], [[0, 1], [1, 2], [3]]),
),
],
)
def test_align(tokens_a, tokens_b, expected): # noqa
a2b, b2a = get_alignments(tokens_a, tokens_b)
assert (a2b, b2a) == expected # noqa
# check symmetry
a2b, b2a = get_alignments(tokens_b, tokens_a) # noqa
assert (b2a, a2b) == expected # noqa
def test_goldparse_startswith_space(en_tokenizer):
text = " a"
doc = en_tokenizer(text)
gold_words = ["a"]
entities = ["U-DATE"]
deps = ["ROOT"]
heads = [0]
example = Example.from_dict(
doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "U-DATE"]
assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"]
def test_goldparse_endswith_space(en_tokenizer):
text = "a\n"
doc = en_tokenizer(text)
gold_words = ["a"]
entities = ["U-DATE"]
deps = ["ROOT"]
heads = [0]
example = Example.from_dict(
doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["U-DATE", "O"]
assert example.get_aligned("DEP", as_string=True) == ["ROOT", None]
def test_gold_constructor():
"""Test that the Example constructor works fine"""
nlp = English()
doc = nlp("This is a sentence")
example = Example.from_dict(doc, {"cats": {"cat1": 1.0, "cat2": 0.0}})
assert example.get_aligned("ORTH", as_string=True) == [
"This",
"is",
"a",
"sentence",
]
assert example.reference.cats["cat1"]
assert not example.reference.cats["cat2"]
def test_tuple_format_implicit():
"""Test tuple format"""
train_data = [
("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}),
(
"Spotify steps up Asia expansion",
{"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
),
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
]
_train_tuples(train_data)
def test_tuple_format_implicit_invalid():
"""Test that an error is thrown for an implicit invalid field"""
train_data = [
("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
(
"Spotify steps up Asia expansion",
{"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
),
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
]
with pytest.raises(KeyError):
_train_tuples(train_data)
def _train_tuples(train_data):
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("ORG")
ner.add_label("LOC")
train_examples = []
for t in train_data:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize()
for i in range(5):
losses = {}
batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(batch, sgd=optimizer, losses=losses)
def test_split_sents(merged_dict):
nlp = English()
example = Example.from_dict(
Doc(nlp.vocab, words=merged_dict["words"], spaces=merged_dict["spaces"]),
merged_dict,
)
assert example.text == "Hi there everyone It is just me"
split_examples = example.split_sents()
assert len(split_examples) == 2
assert split_examples[0].text == "Hi there everyone "
assert split_examples[1].text == "It is just me"
token_annotation_1 = split_examples[0].to_dict()["token_annotation"]
assert token_annotation_1["ORTH"] == ["Hi", "there", "everyone"]
assert token_annotation_1["TAG"] == ["INTJ", "ADV", "PRON"]
assert token_annotation_1["SENT_START"] == [1, 0, 0]
token_annotation_2 = split_examples[1].to_dict()["token_annotation"]
assert token_annotation_2["ORTH"] == ["It", "is", "just", "me"]
assert token_annotation_2["TAG"] == ["PRON", "AUX", "ADV", "PRON"]
assert token_annotation_2["SENT_START"] == [1, 0, 0, 0]
def test_alignment():
other_tokens = ["i", "listened", "to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
assert list(align.y2x.dataXd) == [0, 1, 2, 3, 4, 5, 6, 7]
def test_alignment_case_insensitive():
other_tokens = ["I", "listened", "to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "Obama", "'s", "PODCASTS", "."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
assert list(align.y2x.dataXd) == [0, 1, 2, 3, 4, 5, 6, 7]
def test_alignment_complex():
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [0, 0, 0, 1, 2, 3, 4, 5]
def test_alignment_complex_example(en_vocab):
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
predicted = Doc(
en_vocab, words=other_tokens, spaces=[True, False, False, True, False, False]
)
reference = Doc(
en_vocab, words=spacy_tokens, spaces=[True, True, True, False, True, False]
)
assert predicted.text == "i listened to obama's podcasts."
assert reference.text == "i listened to obama's podcasts."
example = Example(predicted, reference)
align = example.alignment
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [0, 0, 0, 1, 2, 3, 4, 5]
def test_alignment_different_texts():
other_tokens = ["she", "listened", "to", "obama", "'s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
with pytest.raises(ValueError):
Alignment.from_strings(other_tokens, spacy_tokens)
def test_alignment_spaces(en_vocab):
# single leading whitespace
other_tokens = [" ", "i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [0, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [1, 1, 1, 2, 3, 4, 5, 6]
# multiple leading whitespace tokens
other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [0, 0, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [2, 2, 2, 3, 4, 5, 6, 7]
# both with leading whitespace, not identical
other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = [" ", "i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [1, 0, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 5, 5, 6, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [0, 2, 2, 2, 3, 4, 5, 6, 7]
# same leading whitespace, different tokenization
other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = [" ", "i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [1, 1, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 0, 1, 2, 3, 4, 5, 5, 6, 6]
assert list(align.y2x.lengths) == [2, 1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [0, 1, 2, 2, 2, 3, 4, 5, 6, 7]
# only one with trailing whitespace
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " "]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 0]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [0, 0, 0, 1, 2, 3, 4, 5]
# different trailing whitespace
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", " "]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 0]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 1]
assert list(align.y2x.dataXd) == [0, 0, 0, 1, 2, 3, 4, 5, 6]
# same trailing whitespace, different tokenization
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", " "]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5, 6, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 2]
assert list(align.y2x.dataXd) == [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]
# differing whitespace is allowed
other_tokens = ["a", " \n ", "b", "c"]
spacy_tokens = ["a", "b", " ", "c"]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.dataXd) == [0, 1, 3]
assert list(align.y2x.dataXd) == [0, 2, 3]
# other differences in whitespace are allowed
other_tokens = [" ", "a"]
spacy_tokens = [" ", "a", " "]
align = Alignment.from_strings(other_tokens, spacy_tokens)
other_tokens = ["a", " "]
spacy_tokens = ["a", " "]
align = Alignment.from_strings(other_tokens, spacy_tokens)
def test_retokenized_docs(doc):
a = doc.to_array(["TAG"])
doc1 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
doc2 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
example = Example(doc1, doc2)
# fmt: off
expected1 = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
expected2 = [None, "sister", "flew", "to", None, "via", "London", "."]
# fmt: on
assert example.get_aligned("ORTH", as_string=True) == expected1
with doc1.retokenize() as retokenizer:
retokenizer.merge(doc1[0:2])
retokenizer.merge(doc1[5:7])
assert example.get_aligned("ORTH", as_string=True) == expected2