💫 Industrial-strength Natural Language Processing (NLP) in Python
Go to file
Matthew Honnibal e6c3d3471f * Tweak documentation for Tokens, and hide constructor as __cinit__ 2015-01-27 18:57:52 +11:00
bin/parser * Update parser training script for tweaked parser API 2015-01-25 02:20:49 +11:00
docs * Ammend warning 2015-01-27 18:56:18 +11:00
spacy * Tweak documentation for Tokens, and hide constructor as __cinit__ 2015-01-27 18:57:52 +11:00
tests * Fix unicode in test 2015-01-25 19:04:23 +11:00
.gitignore * Ignore cpp files within en dir 2014-12-23 15:19:01 +11:00
.travis.yml * Allow pypy test to fail 2015-01-06 13:13:04 +11:00
LICENSE.txt * Add license file 2015-01-26 03:07:18 +11:00
README.md Update README.md 2015-01-26 03:03:50 +11:00
dev_setup.py * Upd dev_setup 2015-01-03 21:02:03 +11:00
fabfile.py * Fix clean command 2015-01-25 14:49:29 +11:00
requirements.txt * Upd requirements 2015-01-25 23:01:42 +11:00
setup.py * Inc version, and add wget as requirement 2015-01-25 23:00:54 +11:00

README.md

spaCy

Fast, state-of-the-art natural language processing pipeline. Commercial licenses available, or use under AGPL.

http://honnibal.github.io/spaCy