spaCy/spacy/cli/debug_model.py

195 lines
7.1 KiB
Python

from typing import Dict, Any, Optional
from pathlib import Path
from wasabi import msg
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
from thinc.api import Model, data_validation
import typer
from ._util import Arg, Opt, debug_cli, show_validation_error
from ._util import parse_config_overrides, string_to_list
from .. import util
@debug_cli.command("model")
def debug_model_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
component: str = Arg(..., help="Name of the pipeline component of which the model should be analysed"),
layers: str = Opt("", "--layers", "-l", help="Comma-separated names of layer IDs to print"),
dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"),
parameters: bool = Opt(False, "--parameters", "-PAR", help="Show parameters"),
gradients: bool = Opt(False, "--gradients", "-GRAD", help="Show gradients"),
attributes: bool = Opt(False, "--attributes", "-ATTR", help="Show attributes"),
P0: bool = Opt(False, "--print-step0", "-P0", help="Print model before training"),
P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
P3: bool = Opt(False, "--print-step3", "-P3", help="Print final predictions"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
"""
Analyze a Thinc model implementation. Includes checks for internal structure
and activations during training.
DOCS: https://nightly.spacy.io/api/cli#debug-model
"""
if use_gpu >= 0:
msg.info("Using GPU")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
layers = string_to_list(layers, intify=True)
print_settings = {
"dimensions": dimensions,
"parameters": parameters,
"gradients": gradients,
"attributes": attributes,
"layers": layers,
"print_before_training": P0,
"print_after_init": P1,
"print_after_training": P2,
"print_prediction": P3,
}
config_overrides = parse_config_overrides(ctx.args)
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=config_overrides)
nlp, config = util.load_model_from_config(config)
seed = config["training"]["seed"]
if seed is not None:
msg.info(f"Fixing random seed: {seed}")
fix_random_seed(seed)
pipe = nlp.get_pipe(component)
if not hasattr(pipe, "model"):
msg.fail(
f"The component '{component}' does not specify an object that holds a Model.",
exits=1,
)
model = pipe.model
debug_model(model, print_settings=print_settings)
def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None):
if not isinstance(model, Model):
msg.fail(
f"Requires a Thinc Model to be analysed, but found {type(model)} instead.",
exits=1,
)
if print_settings is None:
print_settings = {}
# STEP 0: Printing before training
msg.info(f"Analysing model with ID {model.id}")
if print_settings.get("print_before_training"):
msg.divider(f"STEP 0 - before training")
_print_model(model, print_settings)
# STEP 1: Initializing the model and printing again
X = _get_docs()
Y = _get_output(model.ops)
# The output vector might differ from the official type of the output layer
with data_validation(False):
model.initialize(X=X, Y=Y)
if print_settings.get("print_after_init"):
msg.divider(f"STEP 1 - after initialization")
_print_model(model, print_settings)
# STEP 2: Updating the model and printing again
optimizer = Adam(0.001)
set_dropout_rate(model, 0.2)
for e in range(3):
Y, get_dX = model.begin_update(_get_docs())
dY = get_gradient(model, Y)
get_dX(dY)
model.finish_update(optimizer)
if print_settings.get("print_after_training"):
msg.divider(f"STEP 2 - after training")
_print_model(model, print_settings)
# STEP 3: the final prediction
prediction = model.predict(_get_docs())
if print_settings.get("print_prediction"):
msg.divider(f"STEP 3 - prediction")
msg.info(str(prediction))
msg.good(f"Succesfully ended analysis - model looks good!")
def get_gradient(model, Y):
goldY = _get_output(model.ops)
return Y - goldY
def _sentences():
return [
"Apple is looking at buying U.K. startup for $1 billion",
"Autonomous cars shift insurance liability toward manufacturers",
"San Francisco considers banning sidewalk delivery robots",
"London is a big city in the United Kingdom.",
]
def _get_docs(lang: str = "en"):
nlp = util.get_lang_class(lang)()
return list(nlp.pipe(_sentences()))
def _get_output(ops):
docs = len(_get_docs())
labels = 6
output = ops.alloc2f(d0=docs, d1=labels)
for i in range(docs):
for j in range(labels):
output[i, j] = 1 / (i+j+0.01)
return ops.xp.asarray(output)
def _print_model(model, print_settings):
layers = print_settings.get("layers", "")
parameters = print_settings.get("parameters", False)
dimensions = print_settings.get("dimensions", False)
gradients = print_settings.get("gradients", False)
attributes = print_settings.get("attributes", False)
for i, node in enumerate(model.walk()):
if not layers or i in layers:
msg.info(f"Layer {i}: model ID {node.id}: '{node.name}'")
if dimensions:
for name in node.dim_names:
if node.has_dim(name):
msg.info(f" - dim {name}: {node.get_dim(name)}")
else:
msg.info(f" - dim {name}: {node.has_dim(name)}")
if parameters:
for name in node.param_names:
if node.has_param(name):
print_value = _print_matrix(node.get_param(name))
msg.info(f" - param {name}: {print_value}")
else:
msg.info(f" - param {name}: {node.has_param(name)}")
if gradients:
for name in node.param_names:
if node.has_grad(name):
print_value = _print_matrix(node.get_grad(name))
msg.info(f" - grad {name}: {print_value}")
else:
msg.info(f" - grad {name}: {node.has_grad(name)}")
if attributes:
attrs = node.attrs
for name, value in attrs.items():
msg.info(f" - attr {name}: {value}")
def _print_matrix(value):
if value is None or isinstance(value, bool):
return value
result = str(value.shape) + " - sample: "
sample_matrix = value
for d in range(value.ndim - 1):
sample_matrix = sample_matrix[0]
sample_matrix = sample_matrix[0:5]
result = result + str(sample_matrix)
return result