spaCy/website/usage/_spacy-101/_word-vectors.jade

153 lines
8.5 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//- 💫 DOCS > USAGE > SPACY 101 > WORD VECTORS
p
| Similarity is determined by comparing #[strong word vectors] or "word
| embeddings", multi-dimensional meaning representations of a word. Word
| vectors can be generated using an algorithm like
| #[+a("https://en.wikipedia.org/wiki/Word2vec") word2vec]. spaCy's medium
| #[code md] and large #[code lg] #[+a("/models") models] come with
| #[strong multi-dimensional vectors] that look like this:
+code("banana.vector", false, false, 250).
array([2.02280000e-01, -7.66180009e-02, 3.70319992e-01,
3.28450017e-02, -4.19569999e-01, 7.20689967e-02,
-3.74760002e-01, 5.74599989e-02, -1.24009997e-02,
5.29489994e-01, -5.23800015e-01, -1.97710007e-01,
-3.41470003e-01, 5.33169985e-01, -2.53309999e-02,
1.73800007e-01, 1.67720005e-01, 8.39839995e-01,
5.51070012e-02, 1.05470002e-01, 3.78719985e-01,
2.42750004e-01, 1.47449998e-02, 5.59509993e-01,
1.25210002e-01, -6.75960004e-01, 3.58420014e-01,
-4.00279984e-02, 9.59490016e-02, -5.06900012e-01,
-8.53179991e-02, 1.79800004e-01, 3.38669986e-01,
1.32300004e-01, 3.10209990e-01, 2.18779996e-01,
1.68530002e-01, 1.98740005e-01, -5.73849976e-01,
-1.06490001e-01, 2.66689986e-01, 1.28380001e-01,
-1.28030002e-01, -1.32839993e-01, 1.26570001e-01,
8.67229998e-01, 9.67210010e-02, 4.83060002e-01,
2.12709993e-01, -5.49900010e-02, -8.24249983e-02,
2.24079996e-01, 2.39749998e-01, -6.22599982e-02,
6.21940017e-01, -5.98999977e-01, 4.32009995e-01,
2.81430006e-01, 3.38420011e-02, -4.88150001e-01,
-2.13589996e-01, 2.74010003e-01, 2.40950003e-01,
4.59500015e-01, -1.86049998e-01, -1.04970002e+00,
-9.73049998e-02, -1.89080000e-01, -7.09290028e-01,
4.01950002e-01, -1.87680006e-01, 5.16870022e-01,
1.25200003e-01, 8.41499984e-01, 1.20970003e-01,
8.82389992e-02, -2.91959997e-02, 1.21510006e-03,
5.68250008e-02, -2.74210006e-01, 2.55640000e-01,
6.97930008e-02, -2.22580001e-01, -3.60060006e-01,
-2.24020004e-01, -5.36990017e-02, 1.20220006e+00,
5.45350015e-01, -5.79980016e-01, 1.09049998e-01,
4.21669990e-01, 2.06619993e-01, 1.29360005e-01,
-4.14570011e-02, -6.67770028e-01, 4.04670000e-01,
-1.52179999e-02, -2.76400000e-01, -1.56110004e-01,
-7.91980028e-02, 4.00369987e-02, -1.29439995e-01,
-2.40900001e-04, -2.67850012e-01, -3.81150007e-01,
-9.72450018e-01, 3.17259997e-01, -4.39509988e-01,
4.19340014e-01, 1.83530003e-01, -1.52600005e-01,
-1.08080000e-01, -1.03579998e+00, 7.62170032e-02,
1.65189996e-01, 2.65259994e-04, 1.66160002e-01,
-1.52810007e-01, 1.81229994e-01, 7.02740014e-01,
5.79559989e-03, 5.16639985e-02, -5.97449988e-02,
-2.75510013e-01, -3.90489995e-01, 6.11319989e-02,
5.54300010e-01, -8.79969969e-02, -4.16810006e-01,
3.28260005e-01, -5.25489986e-01, -4.42880005e-01,
8.21829960e-03, 2.44859993e-01, -2.29819998e-01,
-3.49810004e-01, 2.68940002e-01, 3.91660005e-01,
-4.19039994e-01, 1.61909997e-01, -2.62630010e+00,
6.41340017e-01, 3.97430003e-01, -1.28680006e-01,
-3.19460005e-01, -2.56330013e-01, -1.22199997e-01,
3.22750002e-01, -7.99330026e-02, -1.53479993e-01,
3.15050006e-01, 3.05909991e-01, 2.60120004e-01,
1.85530007e-01, -2.40429997e-01, 4.28860001e-02,
4.06219989e-01, -2.42559999e-01, 6.38700008e-01,
6.99829996e-01, -1.40430003e-01, 2.52090007e-01,
4.89840001e-01, -6.10670000e-02, -3.67659986e-01,
-5.50890028e-01, -3.82649988e-01, -2.08430007e-01,
2.28320003e-01, 5.12179971e-01, 2.78679997e-01,
4.76520002e-01, 4.79510017e-02, -3.40079993e-01,
-3.28729987e-01, -4.19669986e-01, -7.54989982e-02,
-3.89539987e-01, -2.96219997e-02, -3.40700001e-01,
2.21699998e-01, -6.28560036e-02, -5.19029975e-01,
-3.77739996e-01, -4.34770016e-03, -5.83010018e-01,
-8.75459984e-02, -2.39289999e-01, -2.47109994e-01,
-2.58870006e-01, -2.98940003e-01, 1.37150005e-01,
2.98919994e-02, 3.65439989e-02, -4.96650010e-01,
-1.81600004e-01, 5.29389977e-01, 2.19919994e-01,
-4.45140004e-01, 3.77979994e-01, -5.70620000e-01,
-4.69460003e-02, 8.18059966e-02, 1.92789994e-02,
3.32459986e-01, -1.46200001e-01, 1.71560004e-01,
3.99809986e-01, 3.62170011e-01, 1.28160000e-01,
3.16439986e-01, 3.75690013e-01, -7.46899992e-02,
-4.84800003e-02, -3.14009994e-01, -1.92860007e-01,
-3.12940001e-01, -1.75529998e-02, -1.75139993e-01,
-2.75870003e-02, -1.00000000e+00, 1.83870003e-01,
8.14339995e-01, -1.89129993e-01, 5.09989977e-01,
-9.19600017e-03, -1.92950002e-03, 2.81890005e-01,
2.72470005e-02, 4.34089988e-01, -5.49669981e-01,
-9.74259973e-02, -2.45399997e-01, -1.72030002e-01,
-8.86500031e-02, -3.02980006e-01, -1.35910004e-01,
-2.77649999e-01, 3.12860007e-03, 2.05559999e-01,
-1.57720000e-01, -5.23079991e-01, -6.47010028e-01,
-3.70139986e-01, 6.93930015e-02, 1.14009999e-01,
2.75940001e-01, -1.38750002e-01, -2.72680014e-01,
6.68910027e-01, -5.64539991e-02, 2.40170002e-01,
-2.67300010e-01, 2.98599988e-01, 1.00830004e-01,
5.55920005e-01, 3.28489989e-01, 7.68579990e-02,
1.55279994e-01, 2.56359994e-01, -1.07720003e-01,
-1.23590000e-01, 1.18270002e-01, -9.90289971e-02,
-3.43279988e-01, 1.15019999e-01, -3.78080010e-01,
-3.90120000e-02, -3.45930010e-01, -1.94040000e-01,
-3.35799992e-01, -6.23340011e-02, 2.89189994e-01,
2.80319989e-01, -5.37410021e-01, 6.27939999e-01,
5.69549985e-02, 6.21469975e-01, -2.52819985e-01,
4.16700006e-01, -1.01079997e-02, -2.54339993e-01,
4.00029987e-01, 4.24320012e-01, 2.26720005e-01,
1.75530002e-01, 2.30489999e-01, 2.83230007e-01,
1.38820007e-01, 3.12180002e-03, 1.70570001e-01,
3.66849989e-01, 2.52470002e-03, -6.40089989e-01,
-2.97650009e-01, 7.89430022e-01, 3.31680000e-01,
-1.19659996e+00, -4.71559986e-02, 5.31750023e-01], dtype=float32)
p
| The #[code .vector] attribute will return an object's vector.
| #[+api("doc#vector") #[code Doc.vector]] and
| #[+api("span#vector") #[code Span.vector]] will default to an average
| of their token vectors. You can also check if a token has a vector
| assigned, and get the L2 norm, which can be used to normalise
| vectors.
+code.
tokens = nlp(u'dog cat banana sasquatch')
for token in tokens:
print(token.text, token.has_vector, token.vector_norm, token.is_oov)
+aside
| #[strong Text]: The original token text.#[br]
| #[strong has vector]: Does the token have a vector representation?#[br]
| #[strong Vector norm]: The L2 norm of the token's vector (the square root
| of the sum of the values squared)#[br]
| #[strong is OOV]: Is the word out-of-vocabulary?
+table(["Text", "Has vector", "Vector norm", "OOV"])
- var style = [0, 1, 1, 1]
+annotation-row(["dog", true, 7.033672992262838, false], style)
+annotation-row(["cat", true, 6.68081871208896, false], style)
+annotation-row(["banana", true, 6.700014292148571, false], style)
+annotation-row(["sasquatch", false, 0, true], style)
p
| The words "dog", "cat" and "banana" are all pretty common in English, so
| they're part of the model's vocabulary, and come with a vector. The word
| "sasquatch" on the other hand is a lot less common and out-of-vocabulary
| so its vector representation consists of 300 dimensions of #[code 0],
| which means it's practically nonexistent.
p
| If your application will benefit from a large vocabulary with more
| vectors, you should consider using one of the
| #[+a("/models") larger models] instead of the default,
| smaller ones, which usually come with a clipped vocabulary.