mirror of https://github.com/explosion/spaCy.git
105 lines
3.5 KiB
Python
105 lines
3.5 KiB
Python
from typing import List
|
|
from thinc.api import Model, Linear, with_array, softmax_activation, padded2list
|
|
from thinc.api import chain, list2padded, configure_normal_init
|
|
from thinc.api import Dropout
|
|
from thinc.types import Floats2d
|
|
|
|
from ...tokens import Doc
|
|
from .._biluo import BILUO
|
|
from .._iob import IOB
|
|
from ...util import registry
|
|
|
|
|
|
@registry.architectures.register("spacy.BiluoTagger.v1")
|
|
def BiluoTagger(
|
|
tok2vec: Model[List[Doc], List[Floats2d]]
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Construct a simple NER tagger, that predicts BILUO tag scores for each
|
|
token and uses greedy decoding with transition-constraints to return a valid
|
|
BILUO tag sequence.
|
|
|
|
A BILUO tag sequence encodes a sequence of non-overlapping labelled spans
|
|
into tags assigned to each token. The first token of a span is given the
|
|
tag B-LABEL, the last token of the span is given the tag L-LABEL, and tokens
|
|
within the span are given the tag U-LABEL. Single-token spans are given
|
|
the tag U-LABEL. All other tokens are assigned the tag O.
|
|
|
|
The BILUO tag scheme generally results in better linear separation between
|
|
classes, especially for non-CRF models, because there are more distinct classes
|
|
for the different situations (Ratinov et al., 2009).
|
|
"""
|
|
biluo = BILUO()
|
|
linear = Linear(
|
|
nO=None, nI=tok2vec.get_dim("nO"), init_W=configure_normal_init(mean=0.02)
|
|
)
|
|
model = chain(
|
|
tok2vec,
|
|
list2padded(),
|
|
with_array(chain(Dropout(0.1), linear)),
|
|
biluo,
|
|
with_array(softmax_activation()),
|
|
padded2list(),
|
|
)
|
|
return Model(
|
|
"biluo-tagger",
|
|
forward,
|
|
init=init,
|
|
layers=[model, linear],
|
|
refs={"tok2vec": tok2vec, "linear": linear, "biluo": biluo},
|
|
dims={"nO": None},
|
|
attrs={"get_num_actions": biluo.attrs["get_num_actions"]},
|
|
)
|
|
|
|
|
|
@registry.architectures.register("spacy.IOBTagger.v1")
|
|
def IOBTagger(
|
|
tok2vec: Model[List[Doc], List[Floats2d]]
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Construct a simple NER tagger, that predicts IOB tag scores for each
|
|
token and uses greedy decoding with transition-constraints to return a valid
|
|
IOB tag sequence.
|
|
|
|
A IOB tag sequence encodes a sequence of non-overlapping labelled spans
|
|
into tags assigned to each token. The first token of a span is given the
|
|
tag B-LABEL, and subsequent tokens are given the tag I-LABEL.
|
|
All other tokens are assigned the tag O.
|
|
"""
|
|
biluo = IOB()
|
|
linear = Linear(nO=None, nI=tok2vec.get_dim("nO"))
|
|
model = chain(
|
|
tok2vec,
|
|
list2padded(),
|
|
with_array(linear),
|
|
biluo,
|
|
with_array(softmax_activation()),
|
|
padded2list(),
|
|
)
|
|
return Model(
|
|
"iob-tagger",
|
|
forward,
|
|
init=init,
|
|
layers=[model],
|
|
refs={"tok2vec": tok2vec, "linear": linear, "biluo": biluo},
|
|
dims={"nO": None},
|
|
attrs={"get_num_actions": biluo.attrs["get_num_actions"]},
|
|
)
|
|
|
|
|
|
def init(model: Model[List[Doc], List[Floats2d]], X=None, Y=None) -> None:
|
|
if model.get_dim("nO") is None and Y:
|
|
model.set_dim("nO", Y[0].shape[1])
|
|
nO = model.get_dim("nO")
|
|
biluo = model.get_ref("biluo")
|
|
linear = model.get_ref("linear")
|
|
biluo.set_dim("nO", nO)
|
|
if linear.has_dim("nO") is None:
|
|
linear.set_dim("nO", nO)
|
|
model.layers[0].initialize(X=X, Y=Y)
|
|
|
|
|
|
def forward(model: Model, X: List[Doc], is_train: bool):
|
|
return model.layers[0](X, is_train)
|
|
|
|
|
|
__all__ = ["BiluoTagger"]
|