spaCy/spacy/morphology.pyx

91 lines
3.4 KiB
Cython

from os import path
from .lemmatizer import Lemmatizer
try:
import ujson as json
except ImportError:
import json
from .parts_of_speech import UNIV_POS_NAMES
from .parts_of_speech cimport ADJ, VERB, NOUN
cdef class Morphology:
def __init__(self, StringStore string_store, tag_map, lemmatizer):
self.mem = Pool()
self.strings = string_store
self.lemmatizer = lemmatizer
self.n_tags = len(tag_map) + 1
self.tag_names = tuple(sorted(tag_map.keys()))
self.reverse_index = {}
self.rich_tags = <RichTagC*>self.mem.alloc(self.n_tags, sizeof(RichTagC))
for i, (tag_str, props) in enumerate(sorted(tag_map.items())):
self.rich_tags[i].id = i
self.rich_tags[i].name = self.strings[tag_str]
self.rich_tags[i].morph = 0
self.rich_tags[i].pos = UNIV_POS_NAMES[props['pos'].upper()]
self.reverse_index[self.rich_tags[i].name] = i
self._cache = PreshMapArray(self.n_tags)
cdef int assign_tag(self, TokenC* token, tag) except -1:
cdef int tag_id
if isinstance(tag, basestring):
try:
tag_id = self.reverse_index[self.strings[tag]]
except KeyError:
print tag
raise
else:
tag_id = tag
analysis = <MorphAnalysisC*>self._cache.get(tag_id, token.lex.orth)
if analysis is NULL:
analysis = <MorphAnalysisC*>self.mem.alloc(1, sizeof(MorphAnalysisC))
analysis.tag = self.rich_tags[tag_id]
analysis.lemma = self.lemmatize(analysis.tag.pos, token.lex.orth)
token.lemma = analysis.lemma
token.pos = analysis.tag.pos
token.tag = analysis.tag.name
token.morph = analysis.tag.morph
cdef int assign_feature(self, uint64_t* morph, feature, value) except -1:
pass
def load_morph_exceptions(self, dict exc):
# Map (form, pos) to (lemma, rich tag)
cdef unicode pos_str
cdef unicode form_str
cdef unicode lemma_str
cdef dict entries
cdef dict props
cdef int lemma
cdef attr_t orth
cdef int pos
for tag_str, entries in exc.items():
tag = self.strings[tag_str]
rich_tag = self.rich_tags[self.reverse_index[tag]]
for form_str, props in entries.items():
cached = <MorphAnalysisC*>self.mem.alloc(1, sizeof(MorphAnalysisC))
orth = self.strings[form_str]
for name_str, value_str in props.items():
if name_str == 'L':
cached.lemma = self.strings[value_str]
else:
self.assign_feature(&cached.tag.morph, name_str, value_str)
if cached.lemma == 0:
cached.lemma = self.lemmatize(rich_tag.pos, orth)
self._cache.set(rich_tag.pos, orth, <void*>cached)
def lemmatize(self, const univ_pos_t pos, attr_t orth):
if self.lemmatizer is None:
return orth
cdef unicode py_string = self.strings[orth]
if pos != NOUN and pos != VERB and pos != ADJ:
return orth
cdef set lemma_strings
cdef unicode lemma_string
lemma_strings = self.lemmatizer(py_string, pos)
lemma_string = sorted(lemma_strings)[0]
lemma = self.strings[lemma_string]
return lemma