spaCy/examples/training/train_textcat.py

193 lines
7.3 KiB
Python

#!/usr/bin/env python
# coding: utf8
"""Train a convolutional neural network text classifier on the
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
automatically via the package `ml_datasets`. The model is added to
spacy.pipeline, and predictions are available via `doc.cats`. For more details,
see the documentation:
* Training: https://spacy.io/usage/training
Compatible with: spaCy v3.0.0+
"""
from __future__ import unicode_literals, print_function
import plac
import random
from pathlib import Path
from ml_datasets import loaders
import spacy
from spacy import util
from spacy.util import minibatch, compounding
from spacy.gold import Example
from thinc.api import Config
@plac.annotations(
config_path=("Path to config file", "positional", None, Path),
output_dir=("Optional output directory", "option", "o", Path),
n_texts=("Number of texts to train from", "option", "t", int),
n_iter=("Number of training iterations", "option", "n", int),
init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path),
dataset=("Dataset to train on (default: imdb)", "option", "d", str),
threshold=("Min. number of instances for a given label (default 20)", "option", "m", int)
)
def main(config_path, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None, dataset="imdb", threshold=20):
if not config_path or not config_path.exists():
raise ValueError(f"Config file not found at {config_path}")
spacy.util.fix_random_seed()
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
print(f"Loading nlp model from {config_path}")
nlp_config = Config().from_disk(config_path)
nlp, _ = util.load_model_from_config(nlp_config, auto_fill=True)
# ensure the nlp object was defined with a textcat component
if "textcat" not in nlp.pipe_names:
raise ValueError(f"The nlp definition in the config does not contain a textcat component")
textcat = nlp.get_pipe("textcat")
# load the dataset
print(f"Loading dataset {dataset} ...")
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(dataset=dataset, threshold=threshold, limit=n_texts)
print(
"Using {} examples ({} training, {} evaluation)".format(
n_texts, len(train_texts), len(dev_texts)
)
)
train_examples = []
for text, cats in zip(train_texts, train_cats):
doc = nlp.make_doc(text)
example = Example.from_dict(doc, {"cats": cats})
for cat in cats:
textcat.add_label(cat)
train_examples.append(example)
with nlp.select_pipes(enable="textcat"): # only train textcat
optimizer = nlp.begin_training()
if init_tok2vec is not None:
with init_tok2vec.open("rb") as file_:
textcat.model.get_ref("tok2vec").from_bytes(file_.read())
print("Training the model...")
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
batch_sizes = compounding(4.0, 32.0, 1.001)
for i in range(n_iter):
losses = {}
# batch up the examples using spaCy's minibatch
random.shuffle(train_examples)
batches = minibatch(train_examples, size=batch_sizes)
for batch in batches:
nlp.update(batch, sgd=optimizer, drop=0.2, losses=losses)
with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
print(
"{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table
losses["textcat"],
scores["textcat_p"],
scores["textcat_r"],
scores["textcat_f"],
)
)
# test the trained model (only makes sense for sentiment analysis)
test_text = "This movie sucked"
doc = nlp(test_text)
print(test_text, doc.cats)
if output_dir is not None:
with nlp.use_params(optimizer.averages):
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
print(test_text, doc2.cats)
def load_data(dataset, threshold, limit=0, split=0.8):
"""Load data from the provided dataset."""
# Partition off part of the train data for evaluation
data_loader = loaders.get(dataset)
train_data, _ = data_loader(limit=int(limit/split))
random.shuffle(train_data)
texts, labels = zip(*train_data)
unique_labels = set()
for label_set in labels:
if isinstance(label_set, int) or isinstance(label_set, str):
unique_labels.add(label_set)
elif isinstance(label_set, list) or isinstance(label_set, set):
unique_labels.update(label_set)
unique_labels = sorted(unique_labels)
print(f"# of unique_labels: {len(unique_labels)}")
count_values_train = dict()
for text, annot_list in train_data:
if isinstance(annot_list, int) or isinstance(annot_list, str):
count_values_train[annot_list] = count_values_train.get(annot_list, 0) + 1
else:
for annot in annot_list:
count_values_train[annot] = count_values_train.get(annot, 0) + 1
for value, count in sorted(count_values_train.items(), key=lambda item: item[1]):
if count < threshold:
unique_labels.remove(value)
print(f"# of unique_labels after filtering with threshold {threshold}: {len(unique_labels)}")
if unique_labels == {0, 1}:
cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
else:
cats = []
for y in labels:
if isinstance(y, str) or isinstance(y, int):
cats.append({str(label): (label == y) for label in unique_labels})
elif isinstance(y, set):
cats.append({str(label): (label in y) for label in unique_labels})
else:
raise ValueError(f"Unrecognised type of labels: {type(y)}")
split = int(len(train_data) * split)
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
def evaluate(tokenizer, textcat, texts, cats):
docs = (tokenizer(text) for text in texts)
tp = 0.0 # True positives
fp = 1e-8 # False positives
fn = 1e-8 # False negatives
tn = 0.0 # True negatives
for i, doc in enumerate(textcat.pipe(docs)):
gold = cats[i]
for label, score in doc.cats.items():
if label not in gold:
continue
if label == "NEGATIVE":
continue
if score >= 0.5 and gold[label] >= 0.5:
tp += 1.0
elif score >= 0.5 and gold[label] < 0.5:
fp += 1.0
elif score < 0.5 and gold[label] < 0.5:
tn += 1
elif score < 0.5 and gold[label] >= 0.5:
fn += 1
precision = tp / (tp + fp)
recall = tp / (tp + fn)
if (precision + recall) == 0:
f_score = 0.0
else:
f_score = 2 * (precision * recall) / (precision + recall)
return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
if __name__ == "__main__":
plac.call(main)