mirror of https://github.com/explosion/spaCy.git
42 lines
1.3 KiB
Python
42 lines
1.3 KiB
Python
from __future__ import unicode_literals
|
|
import pytest
|
|
|
|
|
|
# @pytest.mark.models
|
|
# def test_nsubj(EN):
|
|
# sent = EN(u'A base phrase should be recognized.')
|
|
# base_nps = list(sent.noun_chunks)
|
|
# assert len(base_nps) == 1
|
|
# assert base_nps[0].string == 'A base phrase '
|
|
|
|
|
|
# @pytest.mark.models
|
|
# def test_coord(EN):
|
|
# sent = EN(u'A base phrase and a good phrase are often the same.')
|
|
# base_nps = list(sent.noun_chunks)
|
|
# assert len(base_nps) == 2
|
|
# assert base_nps[0].string == 'A base phrase '
|
|
# assert base_nps[1].string == 'a good phrase '
|
|
|
|
|
|
# @pytest.mark.models
|
|
# def test_pp(EN):
|
|
# sent = EN(u'A phrase with another phrase occurs')
|
|
# base_nps = list(sent.noun_chunks)
|
|
# assert len(base_nps) == 2
|
|
# assert base_nps[0].string == 'A phrase '
|
|
# assert base_nps[1].string == 'another phrase '
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_merge_pp(EN):
|
|
sent = EN(u'A phrase with another phrase occurs')
|
|
nps = [(np[0].idx, np[-1].idx + len(np[-1]), np.lemma_, np[0].ent_type_) for np in sent.noun_chunks]
|
|
|
|
for start, end, lemma, ent_type in nps:
|
|
sent.merge(start, end, u'NP', lemma, ent_type)
|
|
assert sent[0].string == 'A phrase '
|
|
assert sent[1].string == 'with '
|
|
assert sent[2].string == 'another phrase '
|
|
assert sent[3].string == 'occurs'
|