spaCy/spacy/cli/init_model.py

236 lines
8.1 KiB
Python

# coding: utf8
from __future__ import unicode_literals
import plac
import math
from tqdm import tqdm
import numpy
from ast import literal_eval
from pathlib import Path
from preshed.counter import PreshCounter
import tarfile
import gzip
import zipfile
import srsly
from wasabi import Printer
from ._messages import Messages
from ..vectors import Vectors
from ..errors import Errors, Warnings, user_warning
from ..util import ensure_path, get_lang_class
try:
import ftfy
except ImportError:
ftfy = None
msg = Printer()
@plac.annotations(
lang=("Model language", "positional", None, str),
output_dir=("Model output directory", "positional", None, Path),
freqs_loc=("Location of words frequencies file", "option", "f", Path),
jsonl_loc=("Location of JSONL-formatted attributes file", "option", "j", Path),
clusters_loc=("Optional location of brown clusters data", "option", "c", str),
vectors_loc=("Optional vectors file in Word2Vec format" "option", "v", str),
prune_vectors=("Optional number of vectors to prune to", "option", "V", int),
)
def init_model(
lang,
output_dir,
freqs_loc=None,
clusters_loc=None,
jsonl_loc=None,
vectors_loc=None,
prune_vectors=-1,
):
"""
Create a new model from raw data, like word frequencies, Brown clusters
and word vectors. If vectors are provided in Word2Vec format, they can
be either a .txt or zipped as a .zip or .tar.gz.
"""
if jsonl_loc is not None:
if freqs_loc is not None or clusters_loc is not None:
settings = ["-j"]
if freqs_loc:
settings.append("-f")
if clusters_loc:
settings.append("-c")
msg.warn(Messages.M063, Messages.M064)
jsonl_loc = ensure_path(jsonl_loc)
lex_attrs = srsly.read_jsonl(jsonl_loc)
else:
clusters_loc = ensure_path(clusters_loc)
freqs_loc = ensure_path(freqs_loc)
if freqs_loc is not None and not freqs_loc.exists():
msg.fail(Messages.M037, freqs_loc, exits=1)
lex_attrs = read_attrs_from_deprecated(freqs_loc, clusters_loc)
with msg.loading("Creating model..."):
nlp = create_model(lang, lex_attrs)
msg.good("Successfully created model")
if vectors_loc is not None:
add_vectors(nlp, vectors_loc, prune_vectors)
vec_added = len(nlp.vocab.vectors)
lex_added = len(nlp.vocab)
msg.good(Messages.M038, Messages.M039.format(entries=lex_added, vectors=vec_added))
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
return nlp
def open_file(loc):
"""Handle .gz, .tar.gz or unzipped files"""
loc = ensure_path(loc)
if tarfile.is_tarfile(str(loc)):
return tarfile.open(str(loc), "r:gz")
elif loc.parts[-1].endswith("gz"):
return (line.decode("utf8") for line in gzip.open(str(loc), "r"))
elif loc.parts[-1].endswith("zip"):
zip_file = zipfile.ZipFile(str(loc))
names = zip_file.namelist()
file_ = zip_file.open(names[0])
return (line.decode("utf8") for line in file_)
else:
return loc.open("r", encoding="utf8")
def read_attrs_from_deprecated(freqs_loc, clusters_loc):
with msg.loading("Counting frequencies..."):
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
msg.good("Counted frequencies")
with msg.loading("Reading clusters..."):
clusters = read_clusters(clusters_loc) if clusters_loc else {}
msg.good("Read clusters")
lex_attrs = []
sorted_probs = sorted(probs.items(), key=lambda item: item[1], reverse=True)
for i, (word, prob) in tqdm(enumerate(sorted_probs)):
attrs = {"orth": word, "id": i, "prob": prob}
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
if word in clusters:
attrs["cluster"] = int(clusters[word][::-1], 2)
else:
attrs["cluster"] = 0
lex_attrs.append(attrs)
return lex_attrs
def create_model(lang, lex_attrs):
lang_class = get_lang_class(lang)
nlp = lang_class()
for lexeme in nlp.vocab:
lexeme.rank = 0
lex_added = 0
for attrs in lex_attrs:
if "settings" in attrs:
continue
lexeme = nlp.vocab[attrs["orth"]]
lexeme.set_attrs(**attrs)
lexeme.is_oov = False
lex_added += 1
lex_added += 1
oov_prob = min(lex.prob for lex in nlp.vocab)
nlp.vocab.cfg.update({"oov_prob": oov_prob - 1})
return nlp
def add_vectors(nlp, vectors_loc, prune_vectors):
vectors_loc = ensure_path(vectors_loc)
if vectors_loc and vectors_loc.parts[-1].endswith(".npz"):
nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb")))
for lex in nlp.vocab:
if lex.rank:
nlp.vocab.vectors.add(lex.orth, row=lex.rank)
else:
if vectors_loc:
with msg.loading("Reading vectors from {}".format(vectors_loc)):
vectors_data, vector_keys = read_vectors(vectors_loc)
msg.good("Loaded vectors from {}".format(vectors_loc))
else:
vectors_data, vector_keys = (None, None)
if vector_keys is not None:
for word in vector_keys:
if word not in nlp.vocab:
lexeme = nlp.vocab[word]
lexeme.is_oov = False
if vectors_data is not None:
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
nlp.vocab.vectors.name = "%s_model.vectors" % nlp.meta["lang"]
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name
if prune_vectors >= 1:
nlp.vocab.prune_vectors(prune_vectors)
def read_vectors(vectors_loc):
f = open_file(vectors_loc)
shape = tuple(int(size) for size in next(f).split())
vectors_data = numpy.zeros(shape=shape, dtype="f")
vectors_keys = []
for i, line in enumerate(tqdm(f)):
line = line.rstrip()
pieces = line.rsplit(" ", vectors_data.shape[1] + 1)
word = pieces.pop(0)
if len(pieces) != vectors_data.shape[1]:
msg.fail(Errors.E094.format(line_num=i, loc=vectors_loc), exits=1)
vectors_data[i] = numpy.asarray(pieces, dtype="f")
vectors_keys.append(word)
return vectors_data, vectors_keys
def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
counts = PreshCounter()
total = 0
with freqs_loc.open() as f:
for i, line in enumerate(f):
freq, doc_freq, key = line.rstrip().split("\t", 2)
freq = int(freq)
counts.inc(i + 1, freq)
total += freq
counts.smooth()
log_total = math.log(total)
probs = {}
with freqs_loc.open() as f:
for line in tqdm(f):
freq, doc_freq, key = line.rstrip().split("\t", 2)
doc_freq = int(doc_freq)
freq = int(freq)
if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length:
word = literal_eval(key)
smooth_count = counts.smoother(int(freq))
probs[word] = math.log(smooth_count) - log_total
oov_prob = math.log(counts.smoother(0)) - log_total
return probs, oov_prob
def read_clusters(clusters_loc):
clusters = {}
if ftfy is None:
user_warning(Warnings.W004)
with clusters_loc.open() as f:
for line in tqdm(f):
try:
cluster, word, freq = line.split()
if ftfy is not None:
word = ftfy.fix_text(word)
except ValueError:
continue
# If the clusterer has only seen the word a few times, its
# cluster is unreliable.
if int(freq) >= 3:
clusters[word] = cluster
else:
clusters[word] = "0"
# Expand clusters with re-casing
for word, cluster in list(clusters.items()):
if word.lower() not in clusters:
clusters[word.lower()] = cluster
if word.title() not in clusters:
clusters[word.title()] = cluster
if word.upper() not in clusters:
clusters[word.upper()] = cluster
return clusters