spaCy/bin/init_model.py

121 lines
3.6 KiB
Python

"""Set up a model directory.
Requires:
lang_data --- Rules for the tokenizer
* prefix.txt
* suffix.txt
* infix.txt
* morphs.json
* specials.json
corpora --- Data files
* WordNet
* words.sgt.prob --- Smoothed unigram probabilities
* clusters.txt --- Output of hierarchical clustering, e.g. Brown clusters
* vectors.tgz --- output of something like word2vec
"""
import plac
from pathlib import Path
from shutil import copyfile
from shutil import copytree
import codecs
from spacy.en import get_lex_props
from spacy.vocab import Vocab
from spacy.vocab import write_binary_vectors
def setup_tokenizer(lang_data_dir, tok_dir):
if not tok_dir.exists():
tok_dir.mkdir()
for filename in ('infix.txt', 'morphs.json', 'prefix.txt', 'specials.json',
'suffix.txt'):
src = lang_data_dir / filename
dst = tok_dir / filename
if not dst.exists():
copyfile(str(src), str(dst))
def _read_clusters(loc):
clusters = {}
for line in codecs.open(str(loc), 'r', 'utf8'):
try:
cluster, word, freq = line.split()
except ValueError:
continue
# If the clusterer has only seen the word a few times, its cluster is
# unreliable.
if int(freq) >= 3:
clusters[word] = cluster
else:
clusters[word] = '0'
# Expand clusters with re-casing
for word, cluster in clusters.items():
if word.lower() not in clusters:
clusters[word.lower()] = cluster
if word.title() not in clusters:
clusters[word.title()] = cluster
if word.upper() not in clusters
clusters[word.upper()] = cluster
return clusters
def _read_probs(loc):
probs = {}
for i, line in enumerate(codecs.open(str(loc), 'r', 'utf8')):
prob, word = line.split()
prob = float(prob)
probs[word] = prob
return probs
def setup_vocab(src_dir, dst_dir):
if not dst_dir.exists():
dst_dir.mkdir()
vectors_src = src_dir / 'vectors.tgz'
if vectors_src.exists():
write_binary_vectors(str(vectors_src), str(dst_dir / 'vec.bin'))
vocab = Vocab(data_dir=None, get_lex_props=get_lex_props)
clusters = _read_clusters(src_dir / 'clusters.txt')
probs = _read_probs(src_dir / 'words.sgt.prob')
for word in clusters:
if word not in probs:
probs[word] = -17.0
lexicon = []
for word, prob in reversed(sorted(probs.items(), key=lambda item: item[1])):
entry = get_lex_props(word)
if word in clusters or float(prob) >= -17:
entry['prob'] = float(prob)
cluster = clusters.get(word, '0')
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
entry['cluster'] = int(cluster[::-1], 2)
vocab[word] = entry
vocab.dump(str(dst_dir / 'lexemes.bin'))
vocab.strings.dump(str(dst_dir / 'strings.txt'))
def main(lang_data_dir, corpora_dir, model_dir):
model_dir = Path(model_dir)
lang_data_dir = Path(lang_data_dir)
corpora_dir = Path(corpora_dir)
assert corpora_dir.exists()
assert lang_data_dir.exists()
if not model_dir.exists():
model_dir.mkdir()
setup_tokenizer(lang_data_dir, model_dir / 'tokenizer')
setup_vocab(corpora_dir, model_dir / 'vocab')
if not (model_dir / 'wordnet').exists():
copytree(str(corpora_dir / 'wordnet'), str(model_dir / 'wordnet'))
if __name__ == '__main__':
plac.call(main)