spaCy/spacy/tests/parser/test_preset_sbd.py

73 lines
2.0 KiB
Python

import pytest
from thinc.neural.optimizers import Adam
from thinc.neural.ops import NumpyOps
from spacy.attrs import NORM
from spacy.gold import GoldParse
from spacy.vocab import Vocab
from spacy.tokens import Doc
from spacy.pipeline import DependencyParser
@pytest.fixture
def vocab():
return Vocab(lex_attr_getters={NORM: lambda s: s})
@pytest.fixture
def parser(vocab):
parser = DependencyParser(vocab)
parser.cfg["token_vector_width"] = 4
parser.cfg["hidden_width"] = 32
# parser.add_label('right')
parser.add_label("left")
parser.begin_training([], **parser.cfg)
sgd = Adam(NumpyOps(), 0.001)
for i in range(10):
losses = {}
doc = Doc(vocab, words=["a", "b", "c", "d"])
gold = GoldParse(doc, heads=[1, 1, 3, 3], deps=["left", "ROOT", "left", "ROOT"])
parser.update((doc, gold), sgd=sgd, losses=losses)
return parser
def test_no_sentences(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc = parser(doc)
assert len(list(doc.sents)) >= 1
def test_sents_1(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[2].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 2
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = False
doc[2].sent_start = True
doc[3].sent_start = False
doc = parser(doc)
assert len(list(doc.sents)) == 2
def test_sents_1_2(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = True
doc[2].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 3
def test_sents_1_3(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = True
doc[3].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 3
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = True
doc[2].sent_start = False
doc[3].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) == 3