spaCy/spacy/tests/parser/test_add_label.py

91 lines
2.7 KiB
Python

import pytest
from thinc.api import Adam, NumpyOps
from spacy.attrs import NORM
from spacy.gold import GoldParse
from spacy.vocab import Vocab
from spacy.ml.models.defaults import default_parser, default_ner
from spacy.tokens import Doc
from spacy.pipeline import DependencyParser, EntityRecognizer
from spacy.util import fix_random_seed
@pytest.fixture
def vocab():
return Vocab(lex_attr_getters={NORM: lambda s: s})
@pytest.fixture
def parser(vocab):
parser = DependencyParser(vocab, default_parser())
return parser
def test_init_parser(parser):
pass
def _train_parser(parser):
fix_random_seed(1)
parser.add_label("left")
parser.begin_training([], **parser.cfg)
sgd = Adam(0.001, ops=NumpyOps())
for i in range(5):
losses = {}
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
gold = GoldParse(doc, heads=[1, 1, 3, 3], deps=["left", "ROOT", "left", "ROOT"])
parser.update((doc, gold), sgd=sgd, losses=losses)
return parser
def test_add_label(parser):
parser = _train_parser(parser)
parser.add_label("right")
sgd = Adam(0.001, ops=NumpyOps())
for i in range(100):
losses = {}
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
gold = GoldParse(
doc, heads=[1, 1, 3, 3], deps=["right", "ROOT", "left", "ROOT"]
)
parser.update((doc, gold), sgd=sgd, losses=losses)
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc = parser(doc)
assert doc[0].dep_ == "right"
assert doc[2].dep_ == "left"
def test_add_label_deserializes_correctly():
ner1 = EntityRecognizer(Vocab(), default_ner())
ner1.add_label("C")
ner1.add_label("B")
ner1.add_label("A")
ner1.begin_training([])
ner2 = EntityRecognizer(Vocab(), default_ner())
# the second model needs to be resized before we can call from_bytes
ner2.model.resize_output(ner1.moves.n_moves)
ner2.from_bytes(ner1.to_bytes())
assert ner1.moves.n_moves == ner2.moves.n_moves
for i in range(ner1.moves.n_moves):
assert ner1.moves.get_class_name(i) == ner2.moves.get_class_name(i)
@pytest.mark.parametrize(
"pipe_cls,n_moves,model",
[(DependencyParser, 5, default_parser()), (EntityRecognizer, 4, default_ner())],
)
def test_add_label_get_label(pipe_cls, n_moves, model):
"""Test that added labels are returned correctly. This test was added to
test for a bug in DependencyParser.labels that'd cause it to fail when
splitting the move names.
"""
labels = ["A", "B", "C"]
pipe = pipe_cls(Vocab(), model)
for label in labels:
pipe.add_label(label)
assert len(pipe.move_names) == len(labels) * n_moves
pipe_labels = sorted(list(pipe.labels))
assert pipe_labels == labels