spaCy/spacy/cli/profile.py

70 lines
2.3 KiB
Python

# coding: utf8
from __future__ import unicode_literals, division, print_function
import plac
from pathlib import Path
import srsly
import cProfile
import pstats
import sys
import tqdm
import cytoolz
import thinc.extra.datasets
from wasabi import Printer
from ..util import load_model
@plac.annotations(
model=("Model to load", "positional", None, str),
inputs=("Location of input file. '-' for stdin.", "positional", None, str),
n_texts=("Maximum number of texts to use if available", "option", "n", int),
)
def profile(model, inputs=None, n_texts=10000):
"""
Profile a spaCy pipeline, to find out which functions take the most time.
Input should be formatted as one JSON object per line with a key "text".
It can either be provided as a JSONL file, or be read from sys.sytdin.
If no input file is specified, the IMDB dataset is loaded via Thinc.
"""
msg = Printer()
if inputs is not None:
inputs = _read_inputs(inputs, msg)
if inputs is None:
n_inputs = 25000
with msg.loading("Loading IMDB dataset via Thinc..."):
imdb_train, _ = thinc.extra.datasets.imdb()
inputs, _ = zip(*imdb_train)
msg.info("Loaded IMDB dataset and using {} examples".format(n_inputs))
inputs = inputs[:n_inputs]
with msg.loading("Loading model '{}'...".format(model)):
nlp = load_model(model)
msg.good("Loaded model '{}'".format(model))
texts = list(cytoolz.take(n_texts, inputs))
cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof")
msg.divider("Profile stats")
s.strip_dirs().sort_stats("time").print_stats()
def parse_texts(nlp, texts):
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
pass
def _read_inputs(loc, msg):
if loc == "-":
msg.info("Reading input from sys.stdin")
file_ = sys.stdin
file_ = (line.encode("utf8") for line in file_)
else:
input_path = Path(loc)
if not input_path.exists() or not input_path.is_file():
msg.fail("Not a valid input data file", loc, exits=1)
msg.info("Using data from {}".format(input_path.parts[-1]))
file_ = input_path.open()
for line in file_:
data = srsly.json_loads(line)
text = data["text"]
yield text