mirror of https://github.com/explosion/spaCy.git
174 lines
7.1 KiB
Python
174 lines
7.1 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import os
|
|
import datetime
|
|
from os import listdir
|
|
|
|
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
|
|
|
|
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init
|
|
|
|
from thinc.api import chain
|
|
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
|
|
from thinc.api import flatten_add_lengths
|
|
from thinc.t2v import Pooling, sum_pool, mean_pool
|
|
from thinc.t2t import ExtractWindow, ParametricAttention
|
|
from thinc.misc import Residual
|
|
|
|
""" TODO: this code needs to be implemented in pipes.pyx"""
|
|
|
|
|
|
class EL_Model():
|
|
|
|
labels = ["MATCH", "NOMATCH"]
|
|
name = "entity_linker"
|
|
|
|
def __init__(self, kb, nlp):
|
|
run_el._prepare_pipeline(nlp, kb)
|
|
self.nlp = nlp
|
|
self.kb = kb
|
|
|
|
self.entity_encoder = self._simple_encoder(width=300)
|
|
self.article_encoder = self._simple_encoder(width=300)
|
|
|
|
def train_model(self, training_dir, entity_descr_output, limit=None, to_print=True):
|
|
instances, gold_vectors, entity_descriptions, doc_by_article = self._get_training_data(training_dir,
|
|
entity_descr_output,
|
|
limit, to_print)
|
|
|
|
if to_print:
|
|
print("Training on", len(gold_vectors), "instances")
|
|
print(" - pos:", len([x for x in gold_vectors if x]), "instances")
|
|
print(" - pos:", len([x for x in gold_vectors if not x]), "instances")
|
|
print()
|
|
|
|
self.sgd_entity = self.begin_training(self.entity_encoder)
|
|
self.sgd_article = self.begin_training(self.article_encoder)
|
|
|
|
losses = {}
|
|
|
|
for inst, label, entity_descr in zip(instances, gold_vectors, entity_descriptions):
|
|
article = inst.split(sep="_")[0]
|
|
entity_id = inst.split(sep="_")[1]
|
|
article_doc = doc_by_article[article]
|
|
self.update(article_doc, entity_descr, label, losses=losses)
|
|
|
|
def _simple_encoder(self, width):
|
|
with Model.define_operators({">>": chain}):
|
|
encoder = SpacyVectors \
|
|
>> flatten_add_lengths \
|
|
>> ParametricAttention(width)\
|
|
>> Pooling(sum_pool) \
|
|
>> Residual(zero_init(Maxout(width, width)))
|
|
|
|
return encoder
|
|
|
|
def begin_training(self, model):
|
|
# TODO ? link_vectors_to_models(self.vocab)
|
|
sgd = create_default_optimizer(model.ops)
|
|
return sgd
|
|
|
|
def update(self, article_doc, entity_descr, label, drop=0., losses=None):
|
|
entity_encoding, entity_bp = self.entity_encoder.begin_update([entity_descr], drop=drop)
|
|
doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop)
|
|
|
|
# print("entity/article output dim", len(entity_encoding[0]), len(doc_encoding[0]))
|
|
|
|
mse, diffs = self._calculate_similarity(entity_encoding, doc_encoding)
|
|
|
|
# print()
|
|
|
|
# TODO: proper backpropagation taking ranking of elements into account ?
|
|
# TODO backpropagation also for negative examples
|
|
if label:
|
|
entity_bp(diffs, sgd=self.sgd_entity)
|
|
article_bp(diffs, sgd=self.sgd_article)
|
|
print(mse)
|
|
|
|
|
|
# TODO delete ?
|
|
def _simple_cnn_model(self, internal_dim):
|
|
nr_class = len(self.labels)
|
|
with Model.define_operators({">>": chain}):
|
|
model_entity = SpacyVectors >> flatten_add_lengths >> Pooling(mean_pool) # entity encoding
|
|
model_doc = SpacyVectors >> flatten_add_lengths >> Pooling(mean_pool) # doc encoding
|
|
output_layer = Softmax(nr_class, internal_dim*2)
|
|
model = (model_entity | model_doc) >> output_layer
|
|
# model.tok2vec = chain(tok2vec, flatten)
|
|
model.nO = nr_class
|
|
return model
|
|
|
|
def predict(self, entity_doc, article_doc):
|
|
entity_encoding = self.entity_encoder(entity_doc)
|
|
doc_encoding = self.article_encoder(article_doc)
|
|
|
|
print("entity_encodings", len(entity_encoding), entity_encoding)
|
|
print("doc_encodings", len(doc_encoding), doc_encoding)
|
|
mse, diffs = self._calculate_similarity(entity_encoding, doc_encoding)
|
|
print("mse", mse)
|
|
|
|
return mse
|
|
|
|
def _calculate_similarity(self, vector1, vector2):
|
|
if len(vector1) != len(vector2):
|
|
raise ValueError("To calculate similarity, both vectors should be of equal length")
|
|
|
|
diffs = (vector2 - vector1)
|
|
error_sum = (diffs ** 2).sum(axis=1)
|
|
mean_square_error = error_sum / len(vector1)
|
|
return float(mean_square_error), diffs
|
|
|
|
def _get_labels(self):
|
|
return tuple(self.labels)
|
|
|
|
def _get_training_data(self, training_dir, entity_descr_output, limit, to_print):
|
|
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
|
|
|
|
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
|
|
collect_correct=True,
|
|
collect_incorrect=True)
|
|
|
|
instances = list()
|
|
entity_descriptions = list()
|
|
local_vectors = list() # TODO: local vectors
|
|
gold_vectors = list()
|
|
doc_by_article = dict()
|
|
|
|
cnt = 0
|
|
for f in listdir(training_dir):
|
|
if not limit or cnt < limit:
|
|
if not run_el.is_dev(f):
|
|
article_id = f.replace(".txt", "")
|
|
if cnt % 500 == 0 and to_print:
|
|
print(datetime.datetime.now(), "processed", cnt, "files in the dev dataset")
|
|
cnt += 1
|
|
if article_id not in doc_by_article:
|
|
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
|
|
text = file.read()
|
|
doc = self.nlp(text)
|
|
doc_by_article[article_id] = doc
|
|
|
|
for mention_pos, entity_pos in correct_entries[article_id].items():
|
|
descr = id_to_descr.get(entity_pos)
|
|
if descr:
|
|
instances.append(article_id + "_" + entity_pos)
|
|
doc = self.nlp(descr)
|
|
entity_descriptions.append(doc)
|
|
gold_vectors.append(True)
|
|
|
|
for mention_neg, entity_negs in incorrect_entries[article_id].items():
|
|
for entity_neg in entity_negs:
|
|
descr = id_to_descr.get(entity_neg)
|
|
if descr:
|
|
instances.append(article_id + "_" + entity_neg)
|
|
doc = self.nlp(descr)
|
|
entity_descriptions.append(doc)
|
|
gold_vectors.append(False)
|
|
|
|
if to_print:
|
|
print()
|
|
print("Processed", cnt, "dev articles")
|
|
print()
|
|
return instances, gold_vectors, entity_descriptions, doc_by_article
|