spaCy/spacy/tests/regression/test_issue5001-5500.py

144 lines
5.5 KiB
Python

import numpy
from spacy.tokens import Doc, DocBin
from spacy.attrs import DEP, POS, TAG
from spacy.lang.en import English
from spacy.language import Language
from spacy.lang.en.syntax_iterators import noun_chunks
from spacy.vocab import Vocab
import spacy
from thinc.api import get_current_ops
import pytest
from ...util import make_tempdir
def test_issue5048(en_vocab):
words = ["This", "is", "a", "sentence"]
pos_s = ["DET", "VERB", "DET", "NOUN"]
spaces = [" ", " ", " ", ""]
deps_s = ["dep", "adj", "nn", "atm"]
tags_s = ["DT", "VBZ", "DT", "NN"]
strings = en_vocab.strings
for w in words:
strings.add(w)
deps = [strings.add(d) for d in deps_s]
pos = [strings.add(p) for p in pos_s]
tags = [strings.add(t) for t in tags_s]
attrs = [POS, DEP, TAG]
array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64")
doc = Doc(en_vocab, words=words, spaces=spaces)
doc.from_array(attrs, array)
v1 = [(token.text, token.pos_, token.tag_) for token in doc]
doc2 = Doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s)
v2 = [(token.text, token.pos_, token.tag_) for token in doc2]
assert v1 == v2
def test_issue5082():
# Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens
nlp = English()
vocab = nlp.vocab
array1 = numpy.asarray([0.1, 0.5, 0.8], dtype=numpy.float32)
array2 = numpy.asarray([-0.2, -0.6, -0.9], dtype=numpy.float32)
array3 = numpy.asarray([0.3, -0.1, 0.7], dtype=numpy.float32)
array4 = numpy.asarray([0.5, 0, 0.3], dtype=numpy.float32)
array34 = numpy.asarray([0.4, -0.05, 0.5], dtype=numpy.float32)
vocab.set_vector("I", array1)
vocab.set_vector("like", array2)
vocab.set_vector("David", array3)
vocab.set_vector("Bowie", array4)
text = "I like David Bowie"
patterns = [
{"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]}
]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
parsed_vectors_1 = [t.vector for t in nlp(text)]
assert len(parsed_vectors_1) == 4
ops = get_current_ops()
numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[0]), array1)
numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[1]), array2)
numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[2]), array3)
numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[3]), array4)
nlp.add_pipe("merge_entities")
parsed_vectors_2 = [t.vector for t in nlp(text)]
assert len(parsed_vectors_2) == 3
numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[0]), array1)
numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[1]), array2)
numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[2]), array34)
def test_issue5137():
factory_name = "test_issue5137"
pipe_name = "my_component"
@Language.factory(factory_name)
class MyComponent:
def __init__(self, nlp, name=pipe_name, categories="all_categories"):
self.nlp = nlp
self.categories = categories
self.name = name
def __call__(self, doc):
pass
def to_disk(self, path, **kwargs):
pass
def from_disk(self, path, **cfg):
pass
nlp = English()
my_component = nlp.add_pipe(factory_name, name=pipe_name)
assert my_component.categories == "all_categories"
with make_tempdir() as tmpdir:
nlp.to_disk(tmpdir)
overrides = {"components": {pipe_name: {"categories": "my_categories"}}}
nlp2 = spacy.load(tmpdir, config=overrides)
assert nlp2.get_pipe(pipe_name).categories == "my_categories"
def test_issue5141(en_vocab):
"""Ensure an empty DocBin does not crash on serialization"""
doc_bin = DocBin(attrs=["DEP", "HEAD"])
assert list(doc_bin.get_docs(en_vocab)) == []
doc_bin_bytes = doc_bin.to_bytes()
doc_bin_2 = DocBin().from_bytes(doc_bin_bytes)
assert list(doc_bin_2.get_docs(en_vocab)) == []
def test_issue5152():
# Test that the comparison between a Span and a Token, goes well
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
nlp = English()
text = nlp("Talk about being boring!")
text_var = nlp("Talk of being boring!")
y = nlp("Let")
span = text[0:3] # Talk about being
span_2 = text[0:3] # Talk about being
span_3 = text_var[0:3] # Talk of being
token = y[0] # Let
with pytest.warns(UserWarning):
assert span.similarity(token) == 0.0
assert span.similarity(span_2) == 1.0
with pytest.warns(UserWarning):
assert span_2.similarity(span_3) < 1.0
def test_issue5458():
# Test that the noun chuncker does not generate overlapping spans
# fmt: off
words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."]
vocab = Vocab(strings=words)
deps = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"]
pos = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"]
heads = [0, 2, 0, 9, 6, 6, 2, 6, 7, 7, 0]
# fmt: on
en_doc = Doc(vocab, words=words, pos=pos, heads=heads, deps=deps)
en_doc.noun_chunks_iterator = noun_chunks
# if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans"
nlp = English()
merge_nps = nlp.create_pipe("merge_noun_chunks")
merge_nps(en_doc)