spaCy/spacy/_ml.py

469 lines
14 KiB
Python

import ujson
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
from thinc.neural import Model, Maxout, Softmax, Affine
from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module
import random
from thinc.neural._classes.convolution import ExtractWindow
from thinc.neural._classes.static_vectors import StaticVectors
from thinc.neural._classes.batchnorm import BatchNorm
from thinc.neural._classes.resnet import Residual
from thinc.neural import ReLu
from thinc.neural._classes.selu import SELU
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
from thinc.api import FeatureExtracter, with_getitem
from thinc.neural.pooling import Pooling, max_pool, mean_pool, sum_pool
from thinc.neural._classes.attention import ParametricAttention
from thinc.linear.linear import LinearModel
from thinc.api import uniqued, wrap, flatten_add_lengths
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
from .tokens.doc import Doc
import numpy
import io
@layerize
def _flatten_add_lengths(seqs, pad=0, drop=0.):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=pad)
X = ops.flatten(seqs, pad=pad)
return (X, lengths), finish_update
@layerize
def _logistic(X, drop=0.):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10., X)
X = xp.maximum(X, -10., X)
Y = 1. / (1. + xp.exp(-X))
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1-Y))
return dX
return Y, logistic_bwd
@layerize
def add_tuples(X, drop=0.):
"""Give inputs of sequence pairs, where each sequence is (vals, length),
sum the values, returning a single sequence.
If input is:
((vals1, length), (vals2, length)
Output is:
(vals1+vals2, length)
vals are a single tensor for the whole batch.
"""
(vals1, length1), (vals2, length2) = X
assert length1 == length2
def add_tuples_bwd(dY, sgd=None):
return (dY, dY)
return (vals1+vals2, length), add_tuples_bwd
def _zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
if model.W is not None:
model.W.fill(0.)
return model
@layerize
def _preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
keys = [a[:, 0] for a in keys]
ops = Model.ops
lengths = ops.asarray([arr.shape[0] for arr in keys])
keys = ops.xp.concatenate(keys)
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
def _init_for_precomputed(W, ops):
if (W**2).sum() != 0.:
return
reshaped = W.reshape((W.shape[1], W.shape[0] * W.shape[2]))
ops.xavier_uniform_init(reshaped)
W[:] = reshaped.reshape(W.shape)
@describe.on_data(_set_dimensions_if_needed)
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nO=Dimension("Output size"),
W=Synapses("Weights matrix",
lambda obj: (obj.nF, obj.nO, obj.nI),
lambda W, ops: _init_for_precomputed(W, ops)),
b=Biases("Bias vector",
lambda obj: (obj.nO,)),
d_W=Gradient("W"),
d_b=Gradient("b")
)
class PrecomputableAffine(Model):
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.):
# X: (b, i)
# Yf: (b, f, i)
# dY: (b, o)
# dYf: (b, f, o)
#Yf = numpy.einsum('bi,foi->bfo', X, self.W)
Yf = self.ops.xp.tensordot(
X, self.W, axes=[[1], [2]])
Yf += self.b
def backward(dY_ids, sgd=None):
tensordot = self.ops.xp.tensordot
dY, ids = dY_ids
Xf = X[ids]
#dXf = numpy.einsum('bo,foi->bfi', dY, self.W)
dXf = tensordot(dY, self.W, axes=[[1], [1]])
#dW = numpy.einsum('bo,bfi->ofi', dY, Xf)
dW = tensordot(dY, Xf, axes=[[0], [0]])
# ofi -> foi
self.d_W += dW.transpose((1, 0, 2))
self.d_b += dY.sum(axis=0)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return dXf
return Yf, backward
@describe.on_data(_set_dimensions_if_needed)
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nP=Dimension("Number of pieces"),
nO=Dimension("Output size"),
W=Synapses("Weights matrix",
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
lambda W, ops: ops.xavier_uniform_init(W)),
b=Biases("Bias vector",
lambda obj: (obj.nO, obj.nP)),
d_W=Gradient("W"),
d_b=Gradient("b")
)
class PrecomputableMaxouts(Model):
def __init__(self, nO=None, nI=None, nF=None, nP=3, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nP = nP
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.):
# X: (b, i)
# Yfp: (b, f, o, p)
# Xf: (f, b, i)
# dYp: (b, o, p)
# W: (f, o, p, i)
# b: (o, p)
# bi,opfi->bfop
# bop,fopi->bfi
# bop,fbi->opfi : fopi
tensordot = self.ops.xp.tensordot
ascontiguous = self.ops.xp.ascontiguousarray
Yfp = tensordot(X, self.W, axes=[[1], [3]])
Yfp += self.b
def backward(dYp_ids, sgd=None):
dYp, ids = dYp_ids
Xf = X[ids]
dXf = tensordot(dYp, self.W, axes=[[1, 2], [1,2]])
dW = tensordot(dYp, Xf, axes=[[0], [0]])
self.d_W += dW.transpose((2, 0, 1, 3))
self.d_b += dYp.sum(axis=0)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return dXf
return Yfp, backward
def Tok2Vec(width, embed_size, preprocess=None):
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2, name='embed_suffix')
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2, name='embed_shape')
embed = (norm | prefix | suffix | shape )
tok2vec = (
with_flatten(
asarray(Model.ops, dtype='uint64')
>> embed
>> Maxout(width, width*4, pieces=3)
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
pad=4)
)
if preprocess not in (False, None):
tok2vec = preprocess >> tok2vec
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
def asarray(ops, dtype):
def forward(X, drop=0.):
return ops.asarray(X, dtype=dtype), None
return layerize(forward)
def foreach(layer):
def forward(Xs, drop=0.):
results = []
backprops = []
for X in Xs:
result, bp = layer.begin_update(X, drop=drop)
results.append(result)
backprops.append(bp)
def backward(d_results, sgd=None):
dXs = []
for d_result, backprop in zip(d_results, backprops):
dXs.append(backprop(d_result, sgd))
return dXs
return results, backward
model = layerize(forward)
model._layers.append(layer)
return model
def rebatch(size, layer):
ops = layer.ops
def forward(X, drop=0.):
if X.shape[0] < size:
return layer.begin_update(X)
parts = _divide_array(X, size)
results, bp_results = zip(*[layer.begin_update(p, drop=drop)
for p in parts])
y = ops.flatten(results)
def backward(dy, sgd=None):
d_parts = [bp(y, sgd=sgd) for bp, y in
zip(bp_results, _divide_array(dy, size))]
try:
dX = ops.flatten(d_parts)
except TypeError:
dX = None
except ValueError:
dX = None
return dX
return y, backward
model = layerize(forward)
model._layers.append(layer)
return model
def _divide_array(X, size):
parts = []
index = 0
while index < len(X):
parts.append(X[index : index + size])
index += size
return parts
def get_col(idx):
assert idx >= 0, idx
def forward(X, drop=0.):
assert idx >= 0, idx
if isinstance(X, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
def backward(y, sgd=None):
assert idx >= 0, idx
dX = ops.allocate(X.shape)
dX[:, idx] += y
return dX
return output, backward
return layerize(forward)
def zero_init(model):
def _hook(self, X, y=None):
self.W.fill(0)
model.on_data_hooks.append(_hook)
return model
def doc2feats(cols=None):
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
def forward(docs, drop=0.):
feats = []
for doc in docs:
feats.append(doc.to_array(cols))
return feats, None
model = layerize(forward)
model.cols = cols
return model
def print_shape(prefix):
def forward(X, drop=0.):
return X, lambda dX, **kwargs: dX
return layerize(forward)
@layerize
def get_token_vectors(tokens_attrs_vectors, drop=0.):
ops = Model.ops
tokens, attrs, vectors = tokens_attrs_vectors
def backward(d_output, sgd=None):
return (tokens, d_output)
return vectors, backward
def fine_tune(model1, combine=None):
def fine_tune_fwd(docs_tokvecs, drop=0.):
docs, tokvecs = docs_tokvecs
lengths = model.ops.asarray([len(doc) for doc in docs], dtype='i')
X1, bp_X1 = model1.begin_update(docs)
X2 = model1.ops.flatten(tokvecs)
def fine_tune_bwd(d_output, sgd=None):
bp_X1(model1.ops.flatten(d_output), sgd=sgd)
return d_output
return model1.ops.unflatten(X1+X2, lengths), fine_tune_bwd
model = wrap(fine_tune_fwd)
return model
@layerize
def flatten(seqs, drop=0.):
if isinstance(seqs[0], numpy.ndarray):
ops = NumpyOps()
elif hasattr(CupyOps.xp, 'ndarray') and isinstance(seqs[0], CupyOps.xp.ndarray):
ops = CupyOps()
else:
raise ValueError("Unable to flatten sequence of type %s" % type(seqs[0]))
lengths = [len(seq) for seq in seqs]
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths)
X = ops.xp.vstack(seqs)
return X, finish_update
@layerize
def logistic(X, drop=0.):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10., X)
X = xp.maximum(X, -10., X)
Y = 1. / (1. + xp.exp(-X))
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1-Y))
return dX
return Y, logistic_bwd
def zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
return model
@layerize
def preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
keys = [a[:, 0] for a in keys]
ops = Model.ops
lengths = ops.asarray([arr.shape[0] for arr in keys])
keys = ops.xp.concatenate(keys)
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
def build_tagger_model(nr_class, token_vector_width, **cfg):
with Model.define_operators({'>>': chain, '+': add}):
# Input: (doc, tensor) tuples
embed_docs = (
FeatureExtracter([NORM])
>> flatten
>> HashEmbed(token_vector_width, 1000)
)
model = (
fine_tune(embed_docs)
>> with_flatten(
Maxout(token_vector_width, token_vector_width)
>> Softmax(nr_class, token_vector_width)
)
)
model.nI = None
return model
def build_text_classifier(nr_class, width=64, **cfg):
nr_vector = cfg.get('nr_vector', 200)
with Model.define_operators({'>>': chain, '+': add, '|': concatenate, '**': clone}):
embed_lower = HashEmbed(width, nr_vector, column=1)
embed_prefix = HashEmbed(width//2, nr_vector, column=2)
embed_suffix = HashEmbed(width//2, nr_vector, column=3)
embed_shape = HashEmbed(width//2, nr_vector, column=4)
cnn_model = (
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE])
>> _flatten_add_lengths
>> with_getitem(0,
uniqued(
(embed_lower | embed_prefix | embed_suffix | embed_shape)
>> Maxout(width, width+(width//2)*3))
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
)
>> ParametricAttention(width,)
>> Pooling(sum_pool)
>> ReLu(width, width)
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
)
linear_model = (
_preprocess_doc
>> LinearModel(nr_class, drop_factor=0.)
)
model = (
(linear_model | cnn_model)
>> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0))
>> logistic
)
model.lsuv = False
return model