spaCy/spacy/pipeline/entityruler.py

413 lines
16 KiB
Python

from typing import Optional, Union, List, Dict, Tuple, Iterable, Any
from collections import defaultdict
from pathlib import Path
import srsly
from ..language import Language
from ..errors import Errors
from ..util import ensure_path, to_disk, from_disk
from ..tokens import Doc, Span
from ..matcher import Matcher, PhraseMatcher
DEFAULT_ENT_ID_SEP = "||"
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
@Language.factory(
"entity_ruler",
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
default_config={
"phrase_matcher_attr": None,
"validation": False,
"overwrite_ents": False,
"ent_id_sep": DEFAULT_ENT_ID_SEP,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
validation: bool,
overwrite_ents: bool,
ent_id_sep: str,
):
return EntityRuler(
nlp,
name,
phrase_matcher_attr=phrase_matcher_attr,
validate=validation,
overwrite_ents=overwrite_ents,
ent_id_sep=ent_id_sep,
)
class EntityRuler:
"""The EntityRuler lets you add spans to the `Doc.ents` using token-based
rules or exact phrase matches. It can be combined with the statistical
`EntityRecognizer` to boost accuracy, or used on its own to implement a
purely rule-based entity recognition system. After initialization, the
component is typically added to the pipeline using `nlp.add_pipe`.
DOCS: https://spacy.io/api/entityruler
USAGE: https://spacy.io/usage/rule-based-matching#entityruler
"""
def __init__(
self,
nlp: Language,
name: str = "entity_ruler",
*,
phrase_matcher_attr: Optional[Union[int, str]] = None,
validate: bool = False,
overwrite_ents: bool = False,
ent_id_sep: str = DEFAULT_ENT_ID_SEP,
patterns: Optional[List[PatternType]] = None,
):
"""Initialize the entitiy ruler. If patterns are supplied here, they
need to be a list of dictionaries with a `"label"` and `"pattern"`
key. A pattern can either be a token pattern (list) or a phrase pattern
(string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`.
nlp (Language): The shared nlp object to pass the vocab to the matchers
and process phrase patterns.
phrase_matcher_attr (int / str): Token attribute to match on, passed
to the internal PhraseMatcher as `attr`
validate (bool): Whether patterns should be validated, passed to
Matcher and PhraseMatcher as `validate`
patterns (iterable): Optional patterns to load in.
overwrite_ents (bool): If existing entities are present, e.g. entities
added by the model, overwrite them by matches if necessary.
ent_id_sep (str): Separator used internally for entity IDs.
RETURNS (EntityRuler): The newly constructed object.
DOCS: https://spacy.io/api/entityruler#init
"""
self.nlp = nlp
self.name = name
self.overwrite = overwrite_ents
self.token_patterns = defaultdict(list)
self.phrase_patterns = defaultdict(list)
self.matcher = Matcher(nlp.vocab, validate=validate)
if phrase_matcher_attr is not None:
if phrase_matcher_attr.upper() == "TEXT":
phrase_matcher_attr = "ORTH"
self.phrase_matcher_attr = phrase_matcher_attr
self.phrase_matcher = PhraseMatcher(
nlp.vocab, attr=self.phrase_matcher_attr, validate=validate
)
else:
self.phrase_matcher_attr = None
self.phrase_matcher = PhraseMatcher(nlp.vocab, validate=validate)
self.ent_id_sep = ent_id_sep
self._ent_ids = defaultdict(dict)
if patterns is not None:
self.add_patterns(patterns)
def __len__(self) -> int:
"""The number of all patterns added to the entity ruler."""
n_token_patterns = sum(len(p) for p in self.token_patterns.values())
n_phrase_patterns = sum(len(p) for p in self.phrase_patterns.values())
return n_token_patterns + n_phrase_patterns
def __contains__(self, label: str) -> bool:
"""Whether a label is present in the patterns."""
return label in self.token_patterns or label in self.phrase_patterns
def __call__(self, doc: Doc) -> Doc:
"""Find matches in document and add them as entities.
doc (Doc): The Doc object in the pipeline.
RETURNS (Doc): The Doc with added entities, if available.
DOCS: https://spacy.io/api/entityruler#call
"""
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
matches = set(
[(m_id, start, end) for m_id, start, end in matches if start != end]
)
get_sort_key = lambda m: (m[2] - m[1], m[1])
matches = sorted(matches, key=get_sort_key, reverse=True)
entities = list(doc.ents)
new_entities = []
seen_tokens = set()
for match_id, start, end in matches:
if any(t.ent_type for t in doc[start:end]) and not self.overwrite:
continue
# check for end - 1 here because boundaries are inclusive
if start not in seen_tokens and end - 1 not in seen_tokens:
if match_id in self._ent_ids:
label, ent_id = self._ent_ids[match_id]
span = Span(doc, start, end, label=label)
if ent_id:
for token in span:
token.ent_id_ = ent_id
else:
span = Span(doc, start, end, label=match_id)
new_entities.append(span)
entities = [
e for e in entities if not (e.start < end and e.end > start)
]
seen_tokens.update(range(start, end))
doc.ents = entities + new_entities
return doc
@property
def labels(self) -> Tuple[str, ...]:
"""All labels present in the match patterns.
RETURNS (set): The string labels.
DOCS: https://spacy.io/api/entityruler#labels
"""
keys = set(self.token_patterns.keys())
keys.update(self.phrase_patterns.keys())
all_labels = set()
for l in keys:
if self.ent_id_sep in l:
label, _ = self._split_label(l)
all_labels.add(label)
else:
all_labels.add(l)
return tuple(all_labels)
@property
def ent_ids(self) -> Tuple[str, ...]:
"""All entity ids present in the match patterns `id` properties
RETURNS (set): The string entity ids.
DOCS: https://spacy.io/api/entityruler#ent_ids
"""
keys = set(self.token_patterns.keys())
keys.update(self.phrase_patterns.keys())
all_ent_ids = set()
for l in keys:
if self.ent_id_sep in l:
_, ent_id = self._split_label(l)
all_ent_ids.add(ent_id)
return tuple(all_ent_ids)
@property
def patterns(self) -> List[PatternType]:
"""Get all patterns that were added to the entity ruler.
RETURNS (list): The original patterns, one dictionary per pattern.
DOCS: https://spacy.io/api/entityruler#patterns
"""
all_patterns = []
for label, patterns in self.token_patterns.items():
for pattern in patterns:
ent_label, ent_id = self._split_label(label)
p = {"label": ent_label, "pattern": pattern}
if ent_id:
p["id"] = ent_id
all_patterns.append(p)
for label, patterns in self.phrase_patterns.items():
for pattern in patterns:
ent_label, ent_id = self._split_label(label)
p = {"label": ent_label, "pattern": pattern.text}
if ent_id:
p["id"] = ent_id
all_patterns.append(p)
return all_patterns
def add_patterns(self, patterns: List[PatternType]) -> None:
"""Add patterns to the entitiy ruler. A pattern can either be a token
pattern (list of dicts) or a phrase pattern (string). For example:
{'label': 'ORG', 'pattern': 'Apple'}
{'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]}
patterns (list): The patterns to add.
DOCS: https://spacy.io/api/entityruler#add_patterns
"""
# disable the nlp components after this one in case they hadn't been initialized / deserialised yet
try:
current_index = self.nlp.pipe_names.index(self.name)
subsequent_pipes = [
pipe for pipe in self.nlp.pipe_names[current_index + 1 :]
]
except ValueError:
subsequent_pipes = []
with self.nlp.select_pipes(disable=subsequent_pipes):
token_patterns = []
phrase_pattern_labels = []
phrase_pattern_texts = []
phrase_pattern_ids = []
for entry in patterns:
if isinstance(entry["pattern"], str):
phrase_pattern_labels.append(entry["label"])
phrase_pattern_texts.append(entry["pattern"])
phrase_pattern_ids.append(entry.get("id"))
elif isinstance(entry["pattern"], list):
token_patterns.append(entry)
phrase_patterns = []
for label, pattern, ent_id in zip(
phrase_pattern_labels,
self.nlp.pipe(phrase_pattern_texts),
phrase_pattern_ids,
):
phrase_pattern = {"label": label, "pattern": pattern, "id": ent_id}
if ent_id:
phrase_pattern["id"] = ent_id
phrase_patterns.append(phrase_pattern)
for entry in token_patterns + phrase_patterns:
label = entry["label"]
if "id" in entry:
ent_label = label
label = self._create_label(label, entry["id"])
key = self.matcher._normalize_key(label)
self._ent_ids[key] = (ent_label, entry["id"])
pattern = entry["pattern"]
if isinstance(pattern, Doc):
self.phrase_patterns[label].append(pattern)
elif isinstance(pattern, list):
self.token_patterns[label].append(pattern)
else:
raise ValueError(Errors.E097.format(pattern=pattern))
for label, patterns in self.token_patterns.items():
self.matcher.add(label, patterns)
for label, patterns in self.phrase_patterns.items():
self.phrase_matcher.add(label, patterns)
def clear(self) -> None:
"""Reset all patterns."""
self.token_patterns = defaultdict(list)
self.phrase_patterns = defaultdict(list)
self._ent_ids = defaultdict(dict)
def _split_label(self, label: str) -> Tuple[str, str]:
"""Split Entity label into ent_label and ent_id if it contains self.ent_id_sep
label (str): The value of label in a pattern entry
RETURNS (tuple): ent_label, ent_id
"""
if self.ent_id_sep in label:
ent_label, ent_id = label.rsplit(self.ent_id_sep, 1)
else:
ent_label = label
ent_id = None
return ent_label, ent_id
def _create_label(self, label: str, ent_id: str) -> str:
"""Join Entity label with ent_id if the pattern has an `id` attribute
label (str): The label to set for ent.label_
ent_id (str): The label
RETURNS (str): The ent_label joined with configured `ent_id_sep`
"""
if isinstance(ent_id, str):
label = f"{label}{self.ent_id_sep}{ent_id}"
return label
def from_bytes(
self, patterns_bytes: bytes, exclude: Iterable[str] = tuple()
) -> "EntityRuler":
"""Load the entity ruler from a bytestring.
patterns_bytes (bytes): The bytestring to load.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_bytes
"""
cfg = srsly.msgpack_loads(patterns_bytes)
self.clear()
if isinstance(cfg, dict):
self.add_patterns(cfg.get("patterns", cfg))
self.overwrite = cfg.get("overwrite")
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr", None)
if self.phrase_matcher_attr is not None:
self.phrase_matcher = PhraseMatcher(
self.nlp.vocab, attr=self.phrase_matcher_attr
)
self.ent_id_sep = cfg.get("ent_id_sep")
else:
self.add_patterns(cfg)
return self
def to_bytes(self, exclude: Iterable[str] = tuple()) -> bytes:
"""Serialize the entity ruler patterns to a bytestring.
RETURNS (bytes): The serialized patterns.
DOCS: https://spacy.io/api/entityruler#to_bytes
"""
serial = {
"overwrite": self.overwrite,
"ent_id_sep": self.ent_id_sep,
"phrase_matcher_attr": self.phrase_matcher_attr,
"patterns": self.patterns,
}
return srsly.msgpack_dumps(serial)
def from_disk(
self, path: Union[str, Path], exclude: Iterable[str] = tuple()
) -> "EntityRuler":
"""Load the entity ruler from a file. Expects a file containing
newline-delimited JSON (JSONL) with one entry per line.
path (str / Path): The JSONL file to load.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_disk
"""
path = ensure_path(path)
self.clear()
depr_patterns_path = path.with_suffix(".jsonl")
if depr_patterns_path.is_file():
patterns = srsly.read_jsonl(depr_patterns_path)
self.add_patterns(patterns)
else:
cfg = {}
deserializers_patterns = {
"patterns": lambda p: self.add_patterns(
srsly.read_jsonl(p.with_suffix(".jsonl"))
)
}
deserializers_cfg = {"cfg": lambda p: cfg.update(srsly.read_json(p))}
from_disk(path, deserializers_cfg, {})
self.overwrite = cfg.get("overwrite")
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr")
self.ent_id_sep = cfg.get("ent_id_sep")
if self.phrase_matcher_attr is not None:
self.phrase_matcher = PhraseMatcher(
self.nlp.vocab, attr=self.phrase_matcher_attr
)
from_disk(path, deserializers_patterns, {})
return self
def to_disk(self, path: Union[str, Path], exclude: Iterable[str] = tuple()) -> None:
"""Save the entity ruler patterns to a directory. The patterns will be
saved as newline-delimited JSON (JSONL).
path (str / Path): The JSONL file to save.
DOCS: https://spacy.io/api/entityruler#to_disk
"""
path = ensure_path(path)
cfg = {
"overwrite": self.overwrite,
"phrase_matcher_attr": self.phrase_matcher_attr,
"ent_id_sep": self.ent_id_sep,
}
serializers = {
"patterns": lambda p: srsly.write_jsonl(
p.with_suffix(".jsonl"), self.patterns
),
"cfg": lambda p: srsly.write_json(p, cfg),
}
if path.suffix == ".jsonl": # user wants to save only JSONL
srsly.write_jsonl(path, self.patterns)
else:
to_disk(path, serializers, {})