💫 Industrial-strength Natural Language Processing (NLP) in Python
Go to file
Matthew Honnibal bb0b00f819 * Repurporse the Tagger class as a generic Model, wrapping thinc's interface 2014-12-30 21:20:15 +11:00
data * Make suffixes file use full-power regex, so that we can handle periods properly 2014-12-09 19:04:27 +11:00
docs * Work on API reference 2014-12-27 18:45:47 +11:00
spacy * Repurporse the Tagger class as a generic Model, wrapping thinc's interface 2014-12-30 21:20:15 +11:00
tests * Upd tests 2014-12-26 14:26:27 +11:00
.gitignore * Ignore cpp files within en dir 2014-12-23 15:19:01 +11:00
README.md Initial commit 2014-07-04 01:15:40 +10:00
fabfile.py * Add conll experiments 2014-11-12 23:22:05 +11:00
requirements.txt * Pin preshed to a particular version 2014-12-20 04:01:32 +11:00
setup.py * Compile attrs and parser in setup 2014-12-23 15:18:20 +11:00

README.md

spaCy

Lightning fast, full-cream NL tokenization. Tokens are pointers to rich Lexeme structs.