mirror of https://github.com/explosion/spaCy.git
140 lines
4.3 KiB
Python
140 lines
4.3 KiB
Python
from __future__ import unicode_literals
|
|
from __future__ import division
|
|
|
|
import pytest
|
|
|
|
from spacy.serialize import HuffmanCodec
|
|
import numpy
|
|
|
|
from heapq import heappush, heappop, heapify
|
|
from collections import defaultdict
|
|
|
|
|
|
class Vocab(object):
|
|
def __init__(self, freqs):
|
|
freqs['-eol-'] = 5
|
|
total = sum(freqs.values())
|
|
by_freq = freqs.items()
|
|
by_freq.sort(key=lambda item: item[1], reverse=True)
|
|
self.symbols = [sym for sym, freq in by_freq]
|
|
self.probs = numpy.array([item[1] / total for item in by_freq], dtype=numpy.float32)
|
|
self.table = {sym: i for i, sym in enumerate(self.symbols)}
|
|
self.codec = HuffmanCodec(self.probs, self.table['-eol-'])
|
|
|
|
def pack(self, message):
|
|
seq = [self.table[sym] for sym in message]
|
|
return self.codec.encode(numpy.array(seq, dtype=numpy.uint32))
|
|
|
|
def unpack(self, packed):
|
|
ids = self.codec.decode(packed)
|
|
return [self.symbols[i] for i in ids]
|
|
|
|
|
|
def py_encode(symb2freq):
|
|
"""Huffman encode the given dict mapping symbols to weights
|
|
From Rosetta Code
|
|
"""
|
|
heap = [[wt, [sym, ""]] for sym, wt in symb2freq.items()]
|
|
heapify(heap)
|
|
while len(heap) > 1:
|
|
lo = heappop(heap)
|
|
hi = heappop(heap)
|
|
for pair in lo[1:]:
|
|
pair[1] = '0' + pair[1]
|
|
for pair in hi[1:]:
|
|
pair[1] = '1' + pair[1]
|
|
heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])
|
|
return dict(heappop(heap)[1:])
|
|
|
|
|
|
def test1():
|
|
probs = numpy.zeros(shape=(10,), dtype=numpy.float32)
|
|
probs[0] = 0.3
|
|
probs[1] = 0.2
|
|
probs[2] = 0.15
|
|
probs[3] = 0.1
|
|
probs[4] = 0.06
|
|
probs[5] = 0.02
|
|
probs[6] = 0.01
|
|
probs[7] = 0.005
|
|
probs[8] = 0.0001
|
|
probs[9] = 0.000001
|
|
|
|
codec = HuffmanCodec(probs, 9)
|
|
|
|
py_codes = py_encode(dict(enumerate(probs)))
|
|
py_codes = py_codes.items()
|
|
py_codes.sort()
|
|
assert codec.strings == [c for i, c in py_codes]
|
|
|
|
|
|
def test_round_trip():
|
|
freqs = {'the': 10, 'quick': 3, 'brown': 4, 'fox': 1, 'jumped': 5, 'over': 8,
|
|
'lazy': 1, 'dog': 2, '.': 9}
|
|
vocab = Vocab(freqs)
|
|
|
|
message = ['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the',
|
|
'the', 'lazy', 'dog', '.']
|
|
strings = list(vocab.codec.strings)
|
|
codes = {vocab.symbols[i]: strings[i] for i in range(len(vocab.symbols))}
|
|
packed = vocab.pack(message)
|
|
string = b''.join(b'{0:b}'.format(ord(c)).rjust(8, b'0')[::-1] for c in packed.as_bytes())
|
|
for word in message:
|
|
code = codes[word]
|
|
assert string[:len(code)] == code
|
|
string = string[len(code):]
|
|
unpacked = vocab.unpack(packed)
|
|
assert message == unpacked
|
|
|
|
|
|
def test_rosetta():
|
|
txt = u"this is an example for huffman encoding"
|
|
symb2freq = defaultdict(int)
|
|
for ch in txt:
|
|
symb2freq[ch] += 1
|
|
symb2freq['-eol-'] = 1
|
|
by_freq = symb2freq.items()
|
|
by_freq.sort(reverse=True, key=lambda item: item[1])
|
|
symbols = [sym for sym, prob in by_freq]
|
|
probs = numpy.array([prob for sym, prob in by_freq], dtype=numpy.float32)
|
|
|
|
codec = HuffmanCodec(probs, symbols.index('-eol-'))
|
|
py_codec = py_encode(symb2freq)
|
|
|
|
my_lengths = defaultdict(int)
|
|
py_lengths = defaultdict(int)
|
|
for i, my in enumerate(codec.strings):
|
|
symb = by_freq[i][0]
|
|
my_lengths[len(my)] += by_freq[i][1]
|
|
py_lengths[len(py_codec[symb])] += by_freq[i][1]
|
|
my_exp_len = sum(length * weight for length, weight in my_lengths.items())
|
|
py_exp_len = sum(length * weight for length, weight in py_lengths.items())
|
|
assert my_exp_len == py_exp_len
|
|
|
|
|
|
def test_vocab(EN):
|
|
codec = EN.vocab.codec
|
|
expected_length = 0
|
|
for i, code in enumerate(codec.strings):
|
|
expected_length += len(code) * numpy.exp(EN.vocab[i].prob)
|
|
assert 8 < expected_length < 15
|
|
|
|
|
|
def test_freqs():
|
|
freqs = []
|
|
words = []
|
|
for i, line in enumerate(open('freqs.txt')):
|
|
pieces = line.strip().split()
|
|
if len(pieces) != 2:
|
|
continue
|
|
freq, word = pieces
|
|
freqs.append(int(freq))
|
|
freqs.append(1)
|
|
total = sum(freqs)
|
|
freqs = [(float(f) / total) for f in freqs]
|
|
codec = HuffmanCodec(numpy.array(freqs, dtype=numpy.float32), len(freqs)-1)
|
|
expected_length = 0
|
|
for i, code in enumerate(codec.strings):
|
|
expected_length += len(code) * freqs[i]
|
|
assert 8 < expected_length < 14
|