spaCy/spacy/en/__init__.py

196 lines
6.9 KiB
Python

from __future__ import unicode_literals
from os import path
import re
from .. import orth
from ..vocab import Vocab
from ..tokenizer import Tokenizer
from ..syntax.parser import GreedyParser
from ..syntax.arc_eager import ArcEager
from ..syntax.ner import BiluoPushDown
from ..tokens import Tokens
from .pos import EnPosTagger
from .pos import POS_TAGS
from .attrs import get_flags
from ..util import read_lang_data
def get_lex_props(string):
return {
'flags': get_flags(string),
'length': len(string),
'orth': string,
'lower': string.lower(),
'norm': string,
'shape': orth.word_shape(string),
'prefix': string[0],
'suffix': string[-3:],
'cluster': 0,
'prob': 0,
'sentiment': 0
}
LOCAL_DATA_DIR = path.join(path.dirname(__file__), 'data')
parse_if_model_present = -1
class English(object):
"""The English NLP pipeline.
Provides a tokenizer, lexicon, part-of-speech tagger and parser.
Keyword args:
data_dir (unicode):
A path to a directory, from which to load the pipeline.
By default, data is installed within the spaCy package directory. So
if no data_dir is specified, spaCy attempts to load from a
directory named "data" that is a sibling of the spacy/en/__init__.py
file. You can find the location of this file by running:
$ python -c "import spacy.en; print spacy.en.__file__"
To prevent any data files from being loaded, pass data_dir=None. This
is useful if you want to construct a lexicon, which you'll then save
for later loading.
"""
ParserTransitionSystem = ArcEager
EntityTransitionSystem = BiluoPushDown
def __init__(self, data_dir=''):
if data_dir == '':
data_dir = LOCAL_DATA_DIR
self._data_dir = data_dir
self.vocab = Vocab(data_dir=path.join(data_dir, 'vocab') if data_dir else None,
get_lex_props=get_lex_props)
tag_names = list(POS_TAGS.keys())
tag_names.sort()
if data_dir is None:
tok_rules = {}
prefix_re = None
suffix_re = None
infix_re = None
self.has_parser_model = False
self.has_tagger_model = False
self.has_entity_model = False
else:
tok_data_dir = path.join(data_dir, 'tokenizer')
tok_rules, prefix_re, suffix_re, infix_re = read_lang_data(tok_data_dir)
prefix_re = re.compile(prefix_re)
suffix_re = re.compile(suffix_re)
infix_re = re.compile(infix_re)
self.has_parser_model = path.exists(path.join(self._data_dir, 'deps'))
self.has_tagger_model = path.exists(path.join(self._data_dir, 'pos'))
self.has_entity_model = path.exists(path.join(self._data_dir, 'ner'))
self.tokenizer = Tokenizer(self.vocab, tok_rules, prefix_re,
suffix_re, infix_re,
POS_TAGS, tag_names)
# These are lazy-loaded
self._tagger = None
self._parser = None
self._entity = None
@property
def tagger(self):
if self._tagger is None:
self._tagger = EnPosTagger(self.vocab.strings, self._data_dir)
return self._tagger
@property
def parser(self):
if self._parser is None:
self._parser = GreedyParser(path.join(self._data_dir, 'deps'),
self.ParserTransitionSystem)
return self._parser
@property
def entity(self):
if self._entity is None:
self._entity = GreedyParser(path.join(self._data_dir, 'ner'),
self.EntityTransitionSystem)
return self._entity
def __call__(self, text, tag=True, parse=parse_if_model_present,
entity=parse_if_model_present):
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
The tagger and parser are lazy-loaded the first time they are required.
Loading the parser model usually takes 5-10 seconds.
Args:
text (unicode): The text to be processed.
Keyword args:
tag (bool): Whether to add part-of-speech tags to the text. Also
sets morphological analysis and lemmas.
parse (True, False, -1): Whether to add labelled syntactic dependencies.
-1 (default) is "guess": It will guess True if tag=True and the
model has been installed.
Returns:
tokens (spacy.tokens.Tokens):
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].orth_, tokens[0].head.tag_
('An', 'NN')
"""
if parse == True and tag == False:
msg = ("Incompatible arguments: tag=False, parse=True"
"Part-of-speech tags are required for parsing.")
raise ValueError(msg)
if entity == True and tag == False:
msg = ("Incompatible arguments: tag=False, entity=True"
"Part-of-speech tags are required for entity recognition.")
raise ValueError(msg)
tokens = self.tokenizer(text)
if parse == -1 and tag == False:
parse = False
elif parse == -1 and not self.has_parser_model:
parse = False
if entity == -1 and tag == False:
entity = False
elif entity == -1 and not self.has_entity_model:
entity = False
if tag and self.has_tagger_model:
self.tagger(tokens)
if parse == True and not self.has_parser_model:
msg = ("Received parse=True, but parser model not found.\n\n"
"Run:\n"
"$ python -m spacy.en.download\n"
"To install the model.")
raise IOError(msg)
if entity == True and not self.has_entity_model:
msg = ("Received entity=True, but entity model not found.\n\n"
"Run:\n"
"$ python -m spacy.en.download\n"
"To install the model.")
raise IOError(msg)
if parse and self.has_parser_model:
self.parser(tokens)
if entity and self.has_entity_model:
# TODO: Clean this up
self.entity(tokens)
ent_strings = [None] * (max(self.entity.moves.label_ids.values()) + 1)
for label, i in self.entity.moves.label_ids.items():
if i >= 0:
ent_strings[i] = label
tokens._ent_strings = tuple(ent_strings)
return tokens
@property
def tags(self):
"""List of part-of-speech tag names."""
return self.tagger.tag_names