spaCy/spacy/tests/pipeline/test_simple_ner.py

46 lines
1.4 KiB
Python

from spacy.lang.en import English
from spacy.gold import Example
from spacy import util
from ..util import make_tempdir
TRAIN_DATA = [
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
]
def test_overfitting_IO():
# Simple test to try and quickly overfit the SimpleNER component - ensuring the ML models work correctly
nlp = English()
ner = nlp.add_pipe("simple_ner")
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for ent in annotations.get("entities"):
ner.add_label(ent[2])
optimizer = nlp.begin_training()
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["ner"] < 0.0001
# test the trained model
test_text = "I like London."
doc = nlp(test_text)
ents = doc.ents
assert len(ents) == 1
assert ents[0].text == "London"
assert ents[0].label_ == "LOC"
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
ents2 = doc2.ents
assert len(ents2) == 1
assert ents2[0].text == "London"
assert ents2[0].label_ == "LOC"