spaCy/spacy/en.pyx

173 lines
6.1 KiB
Cython

# cython: profile=True
# cython: embedsignature=True
'''Tokenize English text, using a scheme that differs from the Penn Treebank 3
scheme in several important respects:
* Whitespace is added as tokens, except for single spaces. e.g.,
>>> [w.string for w in EN.tokenize(u'\\nHello \\tThere')]
[u'\\n', u'Hello', u' ', u'\\t', u'There']
* Contractions are normalized, e.g.
>>> [w.string for w in EN.tokenize(u"isn't ain't won't he's")]
[u'is', u'not', u'are', u'not', u'will', u'not', u'he', u"__s"]
* Hyphenated words are split, with the hyphen preserved, e.g.:
>>> [w.string for w in EN.tokenize(u'New York-based')]
[u'New', u'York', u'-', u'based']
Other improvements:
* Email addresses, URLs, European-formatted dates and other numeric entities not
found in the PTB are tokenized correctly
* Heuristic handling of word-final periods (PTB expects sentence boundary detection
as a pre-process before tokenization.)
Take care to ensure your training and run-time data is tokenized according to the
same scheme. Tokenization problems are a major cause of poor performance for
NLP tools. If you're using a pre-trained model, the :py:mod:`spacy.ptb3` module
provides a fully Penn Treebank 3-compliant tokenizer.
'''
# TODO
#The script translate_treebank_tokenization can be used to transform a treebank's
#annotation to use one of the spacy tokenization schemes.
from __future__ import unicode_literals
from libc.stdlib cimport malloc, calloc, free
from libc.stdint cimport uint64_t
cimport lang
from spacy import util
from spacy import orth
TAG_THRESH = 0.5
UPPER_THRESH = 0.2
LOWER_THRESH = 0.5
TITLE_THRESH = 0.7
NR_FLAGS = 0
OFT_UPPER = NR_FLAGS; NR_FLAGS += 1
OFT_LOWER = NR_FLAGS; NR_FLAGS += 1
OFT_TITLE = NR_FLAGS; NR_FLAGS += 1
IS_ALPHA = NR_FLAGS; NR_FLAGS += 1
IS_DIGIT = NR_FLAGS; NR_FLAGS += 1
IS_PUNCT = NR_FLAGS; NR_FLAGS += 1
IS_SPACE = NR_FLAGS; NR_FLAGS += 1
IS_ASCII = NR_FLAGS; NR_FLAGS += 1
IS_TITLE = NR_FLAGS; NR_FLAGS += 1
IS_LOWER = NR_FLAGS; NR_FLAGS += 1
IS_UPPER = NR_FLAGS; NR_FLAGS += 1
CAN_PUNCT = NR_FLAGS; NR_FLAGS += 1
CAN_CONJ = NR_FLAGS; NR_FLAGS += 1
CAN_NUM = NR_FLAGS; NR_FLAGS += 1
CAN_DET = NR_FLAGS; NR_FLAGS += 1
CAN_ADP = NR_FLAGS; NR_FLAGS += 1
CAN_ADJ = NR_FLAGS; NR_FLAGS += 1
CAN_ADV = NR_FLAGS; NR_FLAGS += 1
CAN_VERB = NR_FLAGS; NR_FLAGS += 1
CAN_NOUN = NR_FLAGS; NR_FLAGS += 1
CAN_PDT = NR_FLAGS; NR_FLAGS += 1
CAN_POS = NR_FLAGS; NR_FLAGS += 1
CAN_PRON = NR_FLAGS; NR_FLAGS += 1
CAN_PRT = NR_FLAGS; NR_FLAGS += 1
NR_VIEWS = 0
CANON_CASED = NR_VIEWS; NR_VIEWS += 1
SHAPE = NR_VIEWS; NR_VIEWS += 1
NON_SPARSE = NR_VIEWS; NR_VIEWS += 1
cdef class English(Language):
"""English tokenizer, tightly coupled to lexicon.
Attributes:
name (unicode): The two letter code used by Wikipedia for the language.
lexicon (Lexicon): The lexicon. Exposes the lookup method.
"""
def __cinit__(self, name, string_features, flag_features):
flag_funcs = [None for _ in range(NR_FLAGS)]
flag_funcs[OFT_UPPER] = orth.oft_case('upper', UPPER_THRESH)
flag_funcs[OFT_LOWER] = orth.oft_case('lower', LOWER_THRESH)
flag_funcs[OFT_TITLE] = orth.oft_case('title', TITLE_THRESH)
flag_funcs[IS_ALPHA] = orth.is_alpha
flag_funcs[IS_DIGIT] = orth.is_digit
flag_funcs[IS_PUNCT] = orth.is_punct
flag_funcs[IS_SPACE] = orth.is_space
flag_funcs[IS_ASCII] = orth.is_ascii
flag_funcs[IS_TITLE] = orth.is_title
flag_funcs[IS_LOWER] = orth.is_lower
flag_funcs[IS_UPPER] = orth.is_upper
flag_funcs[CAN_PUNCT] = orth.can_tag('PUNCT', TAG_THRESH)
flag_funcs[CAN_CONJ] = orth.can_tag('CONJ', TAG_THRESH)
flag_funcs[CAN_NUM] = orth.can_tag('NUM', TAG_THRESH)
flag_funcs[CAN_DET] = orth.can_tag('DET', TAG_THRESH)
flag_funcs[CAN_ADP] = orth.can_tag('ADP', TAG_THRESH)
flag_funcs[CAN_ADJ] = orth.can_tag('ADJ', TAG_THRESH)
flag_funcs[CAN_ADV] = orth.can_tag('ADV', TAG_THRESH)
flag_funcs[CAN_VERB] = orth.can_tag('VERB', TAG_THRESH)
flag_funcs[CAN_NOUN] = orth.can_tag('NOUN', TAG_THRESH)
flag_funcs[CAN_PDT] = orth.can_tag('PDT', TAG_THRESH)
flag_funcs[CAN_POS] = orth.can_tag('POS', TAG_THRESH)
flag_funcs[CAN_PRON] = orth.can_tag('PRON', TAG_THRESH)
flag_funcs[CAN_PRT] = orth.can_tag('PRT', TAG_THRESH)
string_funcs = [None for _ in range(NR_VIEWS)]
string_funcs[CANON_CASED] = orth.canon_case
string_funcs[SHAPE] = orth.word_shape
string_funcs[NON_SPARSE] = orth.non_sparse
self.name = name
self.cache = {}
lang_data = util.read_lang_data(name)
rules, words, probs, clusters, case_stats, tag_stats = lang_data
self.lexicon = lang.Lexicon(words, probs, clusters, case_stats, tag_stats,
string_funcs, flag_funcs)
self._load_special_tokenization(rules)
cdef int _split_one(self, unicode word):
cdef size_t length = len(word)
cdef int i = 0
if word.startswith("'s") or word.startswith("'S"):
return 2
# Contractions
if word.endswith("'s") and length >= 3:
return length - 2
# Leading punctuation
if _check_punct(word, 0, length):
return 1
elif length >= 1:
# Split off all trailing punctuation characters
i = 0
while i < length and not _check_punct(word, i, length):
i += 1
return i
cdef bint _check_punct(unicode word, size_t i, size_t length):
# Don't count appostrophes as punct if the next char is a letter
if word[i] == "'" and i < (length - 1) and word[i+1].isalpha():
return i == 0
if word[i] == "-" and i < (length - 1) and word[i+1] == '-':
return False
# Don't count commas as punct if the next char is a number
if word[i] == "," and i < (length - 1) and word[i+1].isdigit():
return False
# Don't count periods as punct if the next char is not whitespace
if word[i] == "." and i < (length - 1) and not word[i+1].isspace():
return False
return not word[i].isalnum()
EN = English('en', [], [])