mirror of https://github.com/explosion/spaCy.git
61 lines
2.3 KiB
Python
61 lines
2.3 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
from ...tokens import Doc
|
|
from ..util import get_doc, apply_transition_sequence
|
|
|
|
import pytest
|
|
|
|
|
|
@pytest.mark.parametrize('text', ["A test sentence"])
|
|
@pytest.mark.parametrize('punct', ['.', '!', '?', ''])
|
|
def test_parser_sbd_single_punct(en_tokenizer, text, punct):
|
|
heads = [2, 1, 0, -1] if punct else [2, 1, 0]
|
|
tokens = en_tokenizer(text + punct)
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
|
assert len(doc) == 4 if punct else 3
|
|
assert len(list(doc.sents)) == 1
|
|
assert sum(len(sent) for sent in doc.sents) == len(doc)
|
|
|
|
|
|
@pytest.mark.xfail
|
|
def test_parser_sentence_breaks(en_tokenizer, en_parser):
|
|
text = "This is a sentence . This is another one ."
|
|
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3]
|
|
deps = ['nsubj', 'ROOT', 'det', 'attr', 'punct', 'nsubj', 'ROOT', 'det',
|
|
'attr', 'punct']
|
|
transition = ['L-nsubj', 'S', 'L-det', 'R-attr', 'D', 'R-punct', 'B-ROOT',
|
|
'L-nsubj', 'S', 'L-attr', 'R-attr', 'D', 'R-punct']
|
|
|
|
tokens = en_tokenizer(text)
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
|
|
apply_transition_sequence(en_parser, doc, transition)
|
|
|
|
assert len(list(doc.sents)) == 2
|
|
for token in doc:
|
|
assert token.dep != 0 or token.is_space
|
|
assert [token.head.i for token in doc ] == [1, 1, 3, 1, 1, 6, 6, 8, 6, 6]
|
|
|
|
|
|
# Currently, there's no way of setting the serializer data for the parser
|
|
# without loading the models, so we can't remove the model dependency here yet.
|
|
|
|
@pytest.mark.xfail
|
|
@pytest.mark.models
|
|
def test_parser_sbd_serialization_projective(EN):
|
|
"""Test that before and after serialization, the sentence boundaries are
|
|
the same."""
|
|
|
|
text = "I bought a couch from IKEA It wasn't very comfortable."
|
|
transition = ['L-nsubj', 'S', 'L-det', 'R-dobj', 'D', 'R-prep', 'R-pobj',
|
|
'B-ROOT', 'L-nsubj', 'R-neg', 'D', 'S', 'L-advmod',
|
|
'R-acomp', 'D', 'R-punct']
|
|
|
|
doc = EN.tokenizer(text)
|
|
apply_transition_sequence(EN.parser, doc, transition)
|
|
doc_serialized = Doc(EN.vocab).from_bytes(doc.to_bytes())
|
|
assert doc.is_parsed == True
|
|
assert doc_serialized.is_parsed == True
|
|
assert doc.to_bytes() == doc_serialized.to_bytes()
|
|
assert [s.text for s in doc.sents] == [s.text for s in doc_serialized.sents]
|