spaCy/spacy/tests/pipeline/test_textcat.py

65 lines
2.0 KiB
Python

# coding: utf8
from __future__ import unicode_literals
import pytest
import random
import numpy.random
from spacy.language import Language
from spacy.pipeline import TextCategorizer
from spacy.tokens import Doc
from spacy.gold import GoldParse
@pytest.mark.skip(reason="Test is flakey when run with others")
def test_simple_train():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("textcat"))
nlp.get_pipe("textcat").add_label("answer")
nlp.begin_training()
for i in range(5):
for text, answer in [
("aaaa", 1.0),
("bbbb", 0),
("aa", 1.0),
("bbbbbbbbb", 0.0),
("aaaaaa", 1),
]:
nlp.update([text], [{"cats": {"answer": answer}}])
doc = nlp("aaa")
assert "answer" in doc.cats
assert doc.cats["answer"] >= 0.5
@pytest.mark.skip(reason="Test is flakey when run with others")
def test_textcat_learns_multilabel():
random.seed(5)
numpy.random.seed(5)
docs = []
nlp = Language()
letters = ["a", "b", "c"]
for w1 in letters:
for w2 in letters:
cats = {letter: float(w2 == letter) for letter in letters}
docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
random.shuffle(docs)
model = TextCategorizer(nlp.vocab, width=8)
for letter in letters:
model.add_label(letter)
optimizer = model.begin_training()
for i in range(30):
losses = {}
Ys = [GoldParse(doc, cats=cats) for doc, cats in docs]
Xs = [doc for doc, cats in docs]
model.update(Xs, Ys, sgd=optimizer, losses=losses)
random.shuffle(docs)
for w1 in letters:
for w2 in letters:
doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
truth = {letter: w2 == letter for letter in letters}
model(doc)
for cat, score in doc.cats.items():
if not truth[cat]:
assert score < 0.5
else:
assert score > 0.5