spaCy/spacy/schemas.py

319 lines
13 KiB
Python

from typing import Dict, List, Union, Optional, Sequence, Any, Callable
from enum import Enum
from pydantic import BaseModel, Field, ValidationError, validator
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool
from pydantic import root_validator
from collections import defaultdict
from thinc.api import Optimizer
from .attrs import NAMES
def validate(schema, obj):
"""Validate data against a given pydantic schema.
obj (dict): JSON-serializable data to validate.
schema (pydantic.BaseModel): The schema to validate against.
RETURNS (list): A list of error messages, if available.
"""
try:
schema(**obj)
return []
except ValidationError as e:
errors = e.errors()
data = defaultdict(list)
for error in errors:
err_loc = " -> ".join([str(p) for p in error.get("loc", [])])
data[err_loc].append(error.get("msg"))
return [f"[{loc}] {', '.join(msg)}" for loc, msg in data.items()]
# Matcher token patterns
def validate_token_pattern(obj):
# Try to convert non-string keys (e.g. {ORTH: "foo"} -> {"ORTH": "foo"})
get_key = lambda k: NAMES[k] if isinstance(k, int) and k < len(NAMES) else k
if isinstance(obj, list):
converted = []
for pattern in obj:
if isinstance(pattern, dict):
pattern = {get_key(k): v for k, v in pattern.items()}
converted.append(pattern)
obj = converted
return validate(TokenPatternSchema, {"pattern": obj})
class TokenPatternString(BaseModel):
REGEX: Optional[StrictStr]
IN: Optional[List[StrictStr]]
NOT_IN: Optional[List[StrictStr]]
class Config:
extra = "forbid"
@validator("*", pre=True, each_item=True)
def raise_for_none(cls, v):
if v is None:
raise ValueError("None / null is not allowed")
return v
class TokenPatternNumber(BaseModel):
REGEX: Optional[StrictStr] = None
IN: Optional[List[StrictInt]] = None
NOT_IN: Optional[List[StrictInt]] = None
EQ: Union[StrictInt, StrictFloat] = Field(None, alias="==")
NEQ: Union[StrictInt, StrictFloat] = Field(None, alias="!=")
GEQ: Union[StrictInt, StrictFloat] = Field(None, alias=">=")
LEQ: Union[StrictInt, StrictFloat] = Field(None, alias="<=")
GT: Union[StrictInt, StrictFloat] = Field(None, alias=">")
LT: Union[StrictInt, StrictFloat] = Field(None, alias="<")
class Config:
extra = "forbid"
@validator("*", pre=True, each_item=True)
def raise_for_none(cls, v):
if v is None:
raise ValueError("None / null is not allowed")
return v
class TokenPatternOperator(str, Enum):
plus: StrictStr = "+"
start: StrictStr = "*"
question: StrictStr = "?"
exclamation: StrictStr = "!"
StringValue = Union[TokenPatternString, StrictStr]
NumberValue = Union[TokenPatternNumber, StrictInt, StrictFloat]
UnderscoreValue = Union[
TokenPatternString, TokenPatternNumber, str, int, float, list, bool,
]
class TokenPattern(BaseModel):
orth: Optional[StringValue] = None
text: Optional[StringValue] = None
lower: Optional[StringValue] = None
pos: Optional[StringValue] = None
tag: Optional[StringValue] = None
dep: Optional[StringValue] = None
lemma: Optional[StringValue] = None
shape: Optional[StringValue] = None
ent_type: Optional[StringValue] = None
norm: Optional[StringValue] = None
length: Optional[NumberValue] = None
spacy: Optional[StrictBool] = None
is_alpha: Optional[StrictBool] = None
is_ascii: Optional[StrictBool] = None
is_digit: Optional[StrictBool] = None
is_lower: Optional[StrictBool] = None
is_upper: Optional[StrictBool] = None
is_title: Optional[StrictBool] = None
is_punct: Optional[StrictBool] = None
is_space: Optional[StrictBool] = None
is_bracket: Optional[StrictBool] = None
is_quote: Optional[StrictBool] = None
is_left_punct: Optional[StrictBool] = None
is_right_punct: Optional[StrictBool] = None
is_currency: Optional[StrictBool] = None
is_stop: Optional[StrictBool] = None
is_sent_start: Optional[StrictBool] = None
sent_start: Optional[StrictBool] = None
like_num: Optional[StrictBool] = None
like_url: Optional[StrictBool] = None
like_email: Optional[StrictBool] = None
op: Optional[TokenPatternOperator] = None
underscore: Optional[Dict[StrictStr, UnderscoreValue]] = Field(None, alias="_")
class Config:
extra = "forbid"
allow_population_by_field_name = True
alias_generator = lambda value: value.upper()
@validator("*", pre=True)
def raise_for_none(cls, v):
if v is None:
raise ValueError("None / null is not allowed")
return v
class TokenPatternSchema(BaseModel):
pattern: List[TokenPattern] = Field(..., minItems=1)
class Config:
extra = "forbid"
# Model meta
class ModelMetaSchema(BaseModel):
# fmt: off
lang: StrictStr = Field(..., title="Two-letter language code, e.g. 'en'")
name: StrictStr = Field(..., title="Model name")
version: StrictStr = Field(..., title="Model version")
spacy_version: Optional[StrictStr] = Field(None, title="Compatible spaCy version identifier")
parent_package: Optional[StrictStr] = Field("spacy", title="Name of parent spaCy package, e.g. spacy or spacy-nightly")
pipeline: Optional[List[StrictStr]] = Field([], title="Names of pipeline components")
description: Optional[StrictStr] = Field(None, title="Model description")
license: Optional[StrictStr] = Field(None, title="Model license")
author: Optional[StrictStr] = Field(None, title="Model author name")
email: Optional[StrictStr] = Field(None, title="Model author email")
url: Optional[StrictStr] = Field(None, title="Model author URL")
sources: Optional[Union[List[StrictStr], Dict[str, str]]] = Field(None, title="Training data sources")
vectors: Optional[Dict[str, Any]] = Field(None, title="Included word vectors")
accuracy: Optional[Dict[str, Union[float, int]]] = Field(None, title="Accuracy numbers")
speed: Optional[Dict[str, Union[float, int]]] = Field(None, title="Speed evaluation numbers")
# fmt: on
# JSON training format
class TrainingSchema(BaseModel):
# TODO: write
class Config:
title = "Schema for training data in spaCy's JSON format"
extra = "forbid"
# Config schema
# We're not setting any defaults here (which is too messy) and are making all
# fields required, so we can raise validation errors for missing values. To
# provide a default, we include a separate .cfg file with all values and
# check that against this schema in the test suite to make sure it's always
# up to date.
class ConfigSchemaTraining(BaseModel):
# fmt: off
base_model: Optional[StrictStr] = Field(..., title="The base model to use")
vectors: Optional[StrictStr] = Field(..., title="Path to vectors")
gold_preproc: StrictBool = Field(..., title="Whether to train on gold-standard sentences and tokens")
max_length: StrictInt = Field(..., title="Maximum length of examples (longer examples are divided into sentences if possible)")
limit: StrictInt = Field(..., title="Number of examples to use (0 for all)")
orth_variant_level: StrictFloat = Field(..., title="Orth variants for data augmentation")
dropout: StrictFloat = Field(..., title="Dropout rate")
patience: StrictInt = Field(..., title="How many steps to continue without improvement in evaluation score")
max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for")
max_steps: StrictInt = Field(..., title="Maximum number of update steps to train for")
eval_frequency: StrictInt = Field(..., title="How often to evaluate during training (steps)")
eval_batch_size: StrictInt = Field(..., title="Evaluation batch size")
seed: Optional[StrictInt] = Field(..., title="Random seed")
accumulate_gradient: StrictInt = Field(..., title="Whether to divide the batch up into substeps")
use_pytorch_for_gpu_memory: StrictBool = Field(..., title="Allocate memory via PyTorch")
scores: List[StrictStr] = Field(..., title="Score types to be printed in overview")
score_weights: Dict[StrictStr, Union[StrictFloat, StrictInt]] = Field(..., title="Weights of each score type for selecting final model")
init_tok2vec: Optional[StrictStr] = Field(..., title="Path to pretrained tok2vec weights")
discard_oversize: StrictBool = Field(..., title="Whether to skip examples longer than batch size")
batch_by: StrictStr = Field(..., title="Batch examples by type")
raw_text: Optional[StrictStr] = Field(..., title="Raw text")
tag_map: Optional[StrictStr] = Field(..., title="Path to JSON-formatted tag map")
morph_rules: Optional[StrictStr] = Field(..., title="Path to morphology rules")
batch_size: Union[Sequence[int], int] = Field(..., title="The batch size or batch size schedule")
optimizer: Optimizer = Field(..., title="The optimizer to use")
# fmt: on
class Config:
extra = "forbid"
arbitrary_types_allowed = True
class ConfigSchemaNlp(BaseModel):
# fmt: off
lang: StrictStr = Field(..., title="The base language to use")
pipeline: List[StrictStr] = Field(..., title="The pipeline component names in order")
tokenizer: Callable = Field(..., title="The tokenizer to use")
lemmatizer: Callable = Field(..., title="The lemmatizer to use")
load_vocab_data: StrictBool = Field(..., title="Whether to load additional vocab data from spacy-lookups-data")
# fmt: on
class Config:
extra = "forbid"
arbitrary_types_allowed = True
class ConfigSchemaPretrain(BaseModel):
# fmt: off
max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for")
min_length: StrictInt = Field(..., title="Minimum length of examples")
max_length: StrictInt = Field(..., title="Maximum length of examples")
dropout: StrictFloat = Field(..., title="Dropout rate")
n_save_every: Optional[StrictInt] = Field(..., title="Saving frequency")
batch_size: Union[Sequence[int], int] = Field(..., title="The batch size or batch size schedule")
seed: Optional[StrictInt] = Field(..., title="Random seed")
use_pytorch_for_gpu_memory: StrictBool = Field(..., title="Allocate memory via PyTorch")
tok2vec_model: StrictStr = Field(..., title="tok2vec model in config, e.g. components.tok2vec.model")
optimizer: Optimizer = Field(..., title="The optimizer to use")
# TODO: use a more detailed schema for this?
objective: Dict[str, Any] = Field(..., title="Pretraining objective")
# fmt: on
class Config:
extra = "forbid"
arbitrary_types_allowed = True
class ConfigSchema(BaseModel):
training: ConfigSchemaTraining
nlp: ConfigSchemaNlp
pretraining: Optional[ConfigSchemaPretrain]
components: Dict[str, Dict[str, Any]]
@root_validator
def validate_config(cls, values):
"""Perform additional validation for settings with dependencies."""
pt = values.get("pretraining")
if pt and pt.objective.get("type") == "vectors" and not values["nlp"].vectors:
err = "Need nlp.vectors if pretraining.objective.type is vectors"
raise ValueError(err)
return values
class Config:
extra = "allow"
arbitrary_types_allowed = True
# Project config Schema
class ProjectConfigAsset(BaseModel):
# fmt: off
dest: StrictStr = Field(..., title="Destination of downloaded asset")
url: Optional[StrictStr] = Field(None, title="URL of asset")
checksum: str = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
# fmt: on
class ProjectConfigCommand(BaseModel):
# fmt: off
name: StrictStr = Field(..., title="Name of command")
help: Optional[StrictStr] = Field(None, title="Command description")
script: List[StrictStr] = Field([], title="List of CLI commands to run, in order")
deps: List[StrictStr] = Field([], title="File dependencies required by this command")
outputs: List[StrictStr] = Field([], title="Outputs produced by this command")
outputs_no_cache: List[StrictStr] = Field([], title="Outputs not tracked by DVC (DVC only)")
no_skip: bool = Field(False, title="Never skip this command, even if nothing changed")
# fmt: on
class Config:
title = "A single named command specified in a project config"
extra = "forbid"
class ProjectConfigSchema(BaseModel):
# fmt: off
variables: Dict[StrictStr, Union[str, int, float, bool]] = Field({}, title="Optional variables to substitute in commands")
assets: List[ProjectConfigAsset] = Field([], title="Data assets")
workflows: Dict[StrictStr, List[StrictStr]] = Field({}, title="Named workflows, mapped to list of project commands to run in order")
commands: List[ProjectConfigCommand] = Field([], title="Project command shortucts")
# fmt: on
class Config:
title = "Schema for project configuration file"