spaCy/spacy/tests/regression/test_issue615.py

37 lines
1.1 KiB
Python

from __future__ import unicode_literals
import spacy
from spacy.attrs import ORTH
def merge_phrases(matcher, doc, i, matches):
'''
Merge a phrase. We have to be careful here because we'll change the token indices.
To avoid problems, merge all the phrases once we're called on the last match.
'''
if i != len(matches)-1:
return None
# Get Span objects
spans = [(ent_id, label, doc[start : end]) for ent_id, label, start, end in matches]
for ent_id, label, span in spans:
span.merge('NNP' if label else span.root.tag_, span.text, doc.vocab.strings[label])
def test_entity_ID_assignment():
nlp = spacy.en.English()
text = u"""The golf club is broken"""
doc = nlp(text)
golf_pattern = [
{ ORTH: "golf"},
{ ORTH: "club"}
]
matcher = spacy.matcher.Matcher(nlp.vocab)
matcher.add_entity('Sport_Equipment', on_match = merge_phrases)
matcher.add_pattern("Sport_Equipment", golf_pattern, label = 'Sport_Equipment')
match = matcher(doc)
entities = list(doc.ents)
assert entities != [] #assertion 1
assert entities[0].label != 0 #assertion 2