spaCy/spacy/tests/matcher/test_matcher_bugfixes.py

201 lines
6.2 KiB
Python

import pytest
import numpy
import os
import spacy
from spacy.matcher import Matcher
from spacy.attrs import ORTH, LOWER, ENT_IOB, ENT_TYPE
from spacy.attrs import ORTH, TAG, LOWER, IS_ALPHA, FLAG63
from spacy.symbols import DATE, LOC
def test_overlap_issue118(EN):
'''Test a bug that arose from having overlapping matches'''
doc = EN.tokenizer(u'how many points did lebron james score against the boston celtics last night')
ORG = doc.vocab.strings['ORG']
matcher = Matcher(EN.vocab,
{'BostonCeltics':
('ORG', {},
[
[{LOWER: 'celtics'}],
[{LOWER: 'boston'}, {LOWER: 'celtics'}],
]
)
}
)
assert len(list(doc.ents)) == 0
matches = [(ent_type, start, end) for ent_id, ent_type, start, end in matcher(doc)]
assert matches == [(ORG, 9, 11), (ORG, 10, 11)]
doc.ents = matches[:1]
ents = list(doc.ents)
assert len(ents) == 1
assert ents[0].label == ORG
assert ents[0].start == 9
assert ents[0].end == 11
def test_overlap_issue242():
'''Test overlapping multi-word phrases.'''
patterns = [
[{LOWER: 'food'}, {LOWER: 'safety'}],
[{LOWER: 'safety'}, {LOWER: 'standards'}],
]
if os.environ.get('SPACY_DATA'):
data_dir = os.environ.get('SPACY_DATA')
else:
data_dir = None
nlp = spacy.en.English(path=data_dir, tagger=False, parser=False, entity=False)
nlp.matcher = Matcher(nlp.vocab)
nlp.matcher.add('FOOD', 'FOOD', {}, patterns)
doc = nlp.tokenizer(u'There are different food safety standards in different countries.')
matches = [(ent_type, start, end) for ent_id, ent_type, start, end in nlp.matcher(doc)]
doc.ents += tuple(matches)
food_safety, safety_standards = matches
assert food_safety[1] == 3
assert food_safety[2] == 5
assert safety_standards[1] == 4
assert safety_standards[2] == 6
def test_overlap_reorder(EN):
'''Test order dependence'''
doc = EN.tokenizer(u'how many points did lebron james score against the boston celtics last night')
ORG = doc.vocab.strings['ORG']
matcher = Matcher(EN.vocab,
{'BostonCeltics':
('ORG', {},
[
[{LOWER: 'boston'}, {LOWER: 'celtics'}],
[{LOWER: 'celtics'}],
]
)
}
)
assert len(list(doc.ents)) == 0
matches = [(ent_type, start, end) for ent_id, ent_type, start, end in matcher(doc)]
assert matches == [(ORG, 9, 11), (ORG, 10, 11)]
doc.ents = matches[:1]
ents = list(doc.ents)
assert len(ents) == 1
assert ents[0].label == ORG
assert ents[0].start == 9
assert ents[0].end == 11
def test_overlap_prefix(EN):
'''Test order dependence'''
doc = EN.tokenizer(u'how many points did lebron james score against the boston celtics last night')
ORG = doc.vocab.strings['ORG']
matcher = Matcher(EN.vocab,
{'BostonCeltics':
('ORG', {},
[
[{LOWER: 'boston'}],
[{LOWER: 'boston'}, {LOWER: 'celtics'}],
]
)
}
)
assert len(list(doc.ents)) == 0
matches = [(ent_type, start, end) for ent_id, ent_type, start, end in matcher(doc)]
doc.ents = matches[1:]
assert matches == [(ORG, 9, 10), (ORG, 9, 11)]
ents = list(doc.ents)
assert len(ents) == 1
assert ents[0].label == ORG
assert ents[0].start == 9
assert ents[0].end == 11
def test_overlap_prefix_reorder(EN):
'''Test order dependence'''
doc = EN.tokenizer(u'how many points did lebron james score against the boston celtics last night')
ORG = doc.vocab.strings['ORG']
matcher = Matcher(EN.vocab,
{'BostonCeltics':
('ORG', {},
[
[{LOWER: 'boston'}, {LOWER: 'celtics'}],
[{LOWER: 'boston'}],
]
)
}
)
assert len(list(doc.ents)) == 0
matches = [(ent_type, start, end) for ent_id, ent_type, start, end in matcher(doc)]
doc.ents += tuple(matches)[1:]
assert matches == [(ORG, 9, 10), (ORG, 9, 11)]
ents = doc.ents
assert len(ents) == 1
assert ents[0].label == ORG
assert ents[0].start == 9
assert ents[0].end == 11
# @pytest.mark.models
# def test_ner_interaction(EN):
# EN.matcher.add('LAX_Airport', 'AIRPORT', {}, [[{ORTH: 'LAX'}]])
# EN.matcher.add('SFO_Airport', 'AIRPORT', {}, [[{ORTH: 'SFO'}]])
# doc = EN(u'get me a flight from SFO to LAX leaving 20 December and arriving on January 5th')
# ents = [(ent.label_, ent.text) for ent in doc.ents]
# assert ents[0] == ('AIRPORT', 'SFO')
# assert ents[1] == ('AIRPORT', 'LAX')
# assert ents[2] == ('DATE', '20 December')
# assert ents[3] == ('DATE', 'January 5th')
# @pytest.mark.models
# def test_ner_interaction(EN):
# # ensure that matcher doesn't overwrite annotations set by the NER model
# doc = EN.tokenizer.tokens_from_list(u'get me a flight from SFO to LAX leaving 20 December and arriving on January 5th'.split(' '))
# EN.tagger(doc)
# columns = [ENT_IOB, ENT_TYPE]
# values = numpy.ndarray(shape=(len(doc),len(columns)), dtype='int32')
# # IOB values are 0=missing, 1=I, 2=O, 3=B
# iobs = [2,2,2,2,2,3,2,3,2,3,1,2,2,2,3,1]
# types = [0,0,0,0,0,LOC,0,LOC,0,DATE,DATE,0,0,0,DATE,DATE]
# values[:] = zip(iobs,types)
# doc.from_array(columns,values)
# assert doc[5].ent_type_ == 'LOC'
# assert doc[7].ent_type_ == 'LOC'
# assert doc[9].ent_type_ == 'DATE'
# assert doc[10].ent_type_ == 'DATE'
# assert doc[14].ent_type_ == 'DATE'
# assert doc[15].ent_type_ == 'DATE'
# EN.matcher.add('LAX_Airport', 'AIRPORT', {}, [[{ORTH: 'LAX'}]])
# EN.matcher.add('SFO_Airport', 'AIRPORT', {}, [[{ORTH: 'SFO'}]])
# EN.matcher(doc)
# assert doc[5].ent_type_ != 'AIRPORT'
# assert doc[7].ent_type_ != 'AIRPORT'
# assert doc[5].ent_type_ == 'LOC'
# assert doc[7].ent_type_ == 'LOC'
# assert doc[9].ent_type_ == 'DATE'
# assert doc[10].ent_type_ == 'DATE'
# assert doc[14].ent_type_ == 'DATE'
# assert doc[15].ent_type_ == 'DATE'