spaCy/spacy/pipeline/functions.py

49 lines
1.3 KiB
Python

# coding: utf8
from __future__ import unicode_literals
from ..matcher import Matcher
# TODO: replace doc.merge with doc.retokenize
def merge_noun_chunks(doc):
"""Merge noun chunks into a single token.
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged noun chunks.
"""
if not doc.is_parsed:
return doc
spans = [
(np.start_char, np.end_char, np.root.tag, np.root.dep) for np in doc.noun_chunks
]
for start, end, tag, dep in spans:
doc.merge(start, end, tag=tag, dep=dep)
return doc
def merge_entities(doc):
"""Merge entities into a single token.
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged noun entities.
"""
spans = [
(e.start_char, e.end_char, e.root.tag, e.root.dep, e.label) for e in doc.ents
]
for start, end, tag, dep, ent_type in spans:
doc.merge(start, end, tag=tag, dep=dep, ent_type=ent_type)
return doc
def merge_subtokens(doc, label="subtok"):
merger = Matcher(doc.vocab)
merger.add("SUBTOK", None, [{"DEP": label, "op": "+"}])
matches = merger(doc)
spans = [doc[start : end + 1] for _, start, end in matches]
offsets = [(span.start_char, span.end_char) for span in spans]
for start_char, end_char in offsets:
doc.merge(start_char, end_char)
return doc