spaCy/spacy/pipeline/tok2vec.py

184 lines
6.6 KiB
Python

from thinc.api import Model, set_dropout_rate
from .pipes import Pipe
from ..gold import Example
from ..tokens import Doc
from ..vocab import Vocab
from ..language import component
from ..util import link_vectors_to_models, minibatch
from .defaults import default_tok2vec
@component("tok2vec", assigns=["doc.tensor"], default_model=default_tok2vec)
class Tok2Vec(Pipe):
@classmethod
def from_nlp(cls, nlp, model, **cfg):
return cls(nlp.vocab, model, **cfg)
def __init__(self, vocab, model, **cfg):
"""Construct a new statistical model. Weights are not allocated on
initialisation.
vocab (Vocab): A `Vocab` instance. The model must share the same `Vocab`
instance with the `Doc` objects it will process.
**cfg: Config parameters.
"""
self.vocab = vocab
self.model = model
self.cfg = dict(cfg)
self.listeners = []
def create_listener(self):
listener = Tok2VecListener(
upstream_name="tok2vec", width=self.model.get_dim("nO")
)
self.listeners.append(listener)
def add_listener(self, listener):
self.listeners.append(listener)
def find_listeners(self, model):
for node in model.walk():
if isinstance(node, Tok2VecListener) and node.upstream_name == self.name:
self.add_listener(node)
def __call__(self, doc):
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
model. Vectors are set to the `Doc.tensor` attribute.
docs (Doc or iterable): One or more documents to add vectors to.
RETURNS (dict or None): Intermediate computations.
"""
tokvecses = self.predict([doc])
self.set_annotations([doc], tokvecses)
return doc
def pipe(self, stream, batch_size=128):
"""Process `Doc` objects as a stream.
stream (iterator): A sequence of `Doc` objects to process.
batch_size (int): Number of `Doc` objects to group.
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
"""
for docs in minibatch(stream, batch_size):
docs = list(docs)
tokvecses = self.predict(docs)
self.set_annotations(docs, tokvecses)
yield from docs
def predict(self, docs):
"""Return a single tensor for a batch of documents.
docs (iterable): A sequence of `Doc` objects.
RETURNS (object): Vector representations for each token in the documents.
"""
tokvecs = self.model.predict(docs)
batch_id = Tok2VecListener.get_batch_id(docs)
for listener in self.listeners:
listener.receive(batch_id, tokvecs, None)
return tokvecs
def set_annotations(self, docs, tokvecses):
"""Set the tensor attribute for a batch of documents.
docs (iterable): A sequence of `Doc` objects.
tokvecs (object): Vector representation for each token in the documents.
"""
for doc, tokvecs in zip(docs, tokvecses):
assert tokvecs.shape[0] == len(doc)
doc.tensor = tokvecs
def update(self, examples, drop=0.0, sgd=None, losses=None, set_annotations=False):
"""Update the model.
examples (iterable): A batch of examples
drop (float): The droput rate.
sgd (callable): An optimizer.
RETURNS (dict): Results from the update.
"""
if losses is None:
losses = {}
docs = [eg.predicted for eg in examples]
if isinstance(docs, Doc):
docs = [docs]
set_dropout_rate(self.model, drop)
tokvecs, bp_tokvecs = self.model.begin_update(docs)
d_tokvecs = [self.model.ops.alloc2f(*t2v.shape) for t2v in tokvecs]
losses.setdefault(self.name, 0.0)
def accumulate_gradient(one_d_tokvecs):
"""Accumulate tok2vec loss and gradient. This is passed as a callback
to all but the last listener. Only the last one does the backprop.
"""
nonlocal d_tokvecs
for i in range(len(one_d_tokvecs)):
d_tokvecs[i] += one_d_tokvecs[i]
losses[self.name] += float((one_d_tokvecs[i] ** 2).sum())
def backprop(one_d_tokvecs):
"""Callback to actually do the backprop. Passed to last listener."""
accumulate_gradient(one_d_tokvecs)
d_docs = bp_tokvecs(d_tokvecs)
if sgd is not None:
self.model.finish_update(sgd)
return d_docs
batch_id = Tok2VecListener.get_batch_id(docs)
for listener in self.listeners[:-1]:
listener.receive(batch_id, tokvecs, accumulate_gradient)
self.listeners[-1].receive(batch_id, tokvecs, backprop)
if set_annotations:
self.set_annotations(docs, tokvecs)
def get_loss(self, docs, golds, scores):
pass
def begin_training(
self, get_examples=lambda: [], pipeline=None, sgd=None, **kwargs
):
"""Allocate models and pre-process training data
get_examples (function): Function returning example training data.
pipeline (list): The pipeline the model is part of.
"""
docs = [Doc(Vocab(), words=["hello"])]
self.model.initialize(X=docs)
link_vectors_to_models(self.vocab)
class Tok2VecListener(Model):
"""A layer that gets fed its answers from an upstream connection,
for instance from a component earlier in the pipeline.
"""
name = "tok2vec-listener"
def __init__(self, upstream_name, width):
Model.__init__(self, name=self.name, forward=forward, dims={"nO": width})
self.upstream_name = upstream_name
self._batch_id = None
self._outputs = None
self._backprop = None
@classmethod
def get_batch_id(cls, inputs):
return sum(sum(token.orth for token in doc) for doc in inputs)
def receive(self, batch_id, outputs, backprop):
self._batch_id = batch_id
self._outputs = outputs
self._backprop = backprop
def verify_inputs(self, inputs):
if self._batch_id is None and self._outputs is None:
raise ValueError("The Tok2Vec listener did not receive valid input.")
else:
batch_id = self.get_batch_id(inputs)
if batch_id != self._batch_id:
raise ValueError(f"Mismatched IDs! {batch_id} vs {self._batch_id}")
else:
return True
def forward(model: Tok2VecListener, inputs, is_train):
if is_train:
model.verify_inputs(inputs)
return model._outputs, model._backprop
else:
return [doc.tensor for doc in inputs], lambda dX: []