mirror of https://github.com/explosion/spaCy.git
115 lines
3.6 KiB
Python
115 lines
3.6 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf8
|
|
|
|
"""Example of defining a knowledge base in spaCy,
|
|
which is needed to implement entity linking functionality.
|
|
|
|
For more details, see the documentation:
|
|
* Knowledge base: https://spacy.io/api/kb
|
|
* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
|
|
|
|
Compatible with: spaCy v2.2.4
|
|
Last tested with: v2.2.4
|
|
"""
|
|
from __future__ import unicode_literals, print_function
|
|
|
|
import plac
|
|
from pathlib import Path
|
|
|
|
from spacy.vocab import Vocab
|
|
import spacy
|
|
from spacy.kb import KnowledgeBase
|
|
|
|
|
|
# Q2146908 (Russ Cochran): American golfer
|
|
# Q7381115 (Russ Cochran): publisher
|
|
ENTITIES = {"Q2146908": ("American golfer", 342), "Q7381115": ("publisher", 17)}
|
|
|
|
|
|
@plac.annotations(
|
|
model=("Model name, should have pretrained word embeddings", "positional", None, str),
|
|
output_dir=("Optional output directory", "option", "o", Path),
|
|
)
|
|
def main(model, output_dir=None):
|
|
"""Load the model and create the KB with pre-defined entity encodings.
|
|
If an output_dir is provided, the KB will be stored there in a file 'kb'.
|
|
The updated vocab will also be written to a directory in the output_dir."""
|
|
|
|
nlp = spacy.load(model) # load existing spaCy model
|
|
print("Loaded model '%s'" % model)
|
|
|
|
# check the length of the nlp vectors
|
|
if "vectors" not in nlp.meta or not nlp.vocab.vectors.size:
|
|
raise ValueError(
|
|
"The `nlp` object should have access to pretrained word vectors, "
|
|
" cf. https://spacy.io/usage/models#languages."
|
|
)
|
|
|
|
# You can change the dimension of vectors in your KB by using an encoder that changes the dimensionality.
|
|
# For simplicity, we'll just use the original vector dimension here instead.
|
|
vectors_dim = nlp.vocab.vectors.shape[1]
|
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=vectors_dim)
|
|
|
|
# set up the data
|
|
entity_ids = []
|
|
descr_embeddings = []
|
|
freqs = []
|
|
for key, value in ENTITIES.items():
|
|
desc, freq = value
|
|
entity_ids.append(key)
|
|
descr_embeddings.append(nlp(desc).vector)
|
|
freqs.append(freq)
|
|
|
|
# set the entities, can also be done by calling `kb.add_entity` for each entity
|
|
kb.set_entities(entity_list=entity_ids, freq_list=freqs, vector_list=descr_embeddings)
|
|
|
|
# adding aliases, the entities need to be defined in the KB beforehand
|
|
kb.add_alias(
|
|
alias="Russ Cochran",
|
|
entities=["Q2146908", "Q7381115"],
|
|
probabilities=[0.24, 0.7], # the sum of these probabilities should not exceed 1
|
|
)
|
|
|
|
# test the trained model
|
|
print()
|
|
_print_kb(kb)
|
|
|
|
# save model to output directory
|
|
if output_dir is not None:
|
|
output_dir = Path(output_dir)
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
kb_path = str(output_dir / "kb")
|
|
kb.to_disk(kb_path)
|
|
print()
|
|
print("Saved KB to", kb_path)
|
|
|
|
vocab_path = output_dir / "vocab"
|
|
kb.vocab.to_disk(vocab_path)
|
|
print("Saved vocab to", vocab_path)
|
|
|
|
print()
|
|
|
|
# test the saved model
|
|
# always reload a knowledge base with the same vocab instance!
|
|
print("Loading vocab from", vocab_path)
|
|
print("Loading KB from", kb_path)
|
|
vocab2 = Vocab().from_disk(vocab_path)
|
|
kb2 = KnowledgeBase(vocab2, entity_vector_length=1)
|
|
kb2.from_disk(kb_path)
|
|
print()
|
|
_print_kb(kb2)
|
|
|
|
|
|
def _print_kb(kb):
|
|
print(kb.get_size_entities(), "kb entities:", kb.get_entity_strings())
|
|
print(kb.get_size_aliases(), "kb aliases:", kb.get_alias_strings())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
plac.call(main)
|
|
|
|
# Expected output:
|
|
# 2 kb entities: ['Q2146908', 'Q7381115']
|
|
# 1 kb aliases: ['Russ Cochran']
|