spaCy/spacy/_ml.py

988 lines
32 KiB
Python

# coding: utf8
from __future__ import unicode_literals
import numpy
import warnings
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
from thinc.t2t import ExtractWindow, ParametricAttention
from thinc.t2v import Pooling, sum_pool, mean_pool
from thinc.i2v import HashEmbed
from thinc.misc import Residual, FeatureExtracter
from thinc.misc import LayerNorm as LN
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
from thinc.api import with_getitem, flatten_add_lengths
from thinc.api import uniqued, wrap, noop
from thinc.linear.linear import LinearModel
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module, copy_array
from thinc.neural.optimizers import Adam
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
import thinc.extra.load_nlp
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
from .errors import Errors, Warnings
from . import util
from . import ml as new_ml
from .ml import _legacy_tok2vec
VECTORS_KEY = "spacy_pretrained_vectors"
# Backwards compatibility with <2.2.2
USE_MODEL_REGISTRY_TOK2VEC = False
def cosine(vec1, vec2):
xp = get_array_module(vec1)
norm1 = xp.linalg.norm(vec1)
norm2 = xp.linalg.norm(vec2)
if norm1 == 0.0 or norm2 == 0.0:
return 0
else:
return vec1.dot(vec2) / (norm1 * norm2)
def create_default_optimizer(ops, **cfg):
learn_rate = util.env_opt("learn_rate", 0.001)
beta1 = util.env_opt("optimizer_B1", 0.9)
beta2 = util.env_opt("optimizer_B2", 0.999)
eps = util.env_opt("optimizer_eps", 1e-8)
L2 = util.env_opt("L2_penalty", 1e-6)
max_grad_norm = util.env_opt("grad_norm_clip", 1.0)
optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1, beta2=beta2, eps=eps)
optimizer.max_grad_norm = max_grad_norm
optimizer.device = ops.device
return optimizer
@layerize
def _flatten_add_lengths(seqs, pad=0, drop=0.0):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=pad)
X = ops.flatten(seqs, pad=pad)
return (X, lengths), finish_update
def _zero_init(model):
def _zero_init_impl(self, *args, **kwargs):
self.W.fill(0)
model.on_init_hooks.append(_zero_init_impl)
if model.W is not None:
model.W.fill(0.0)
return model
def with_cpu(ops, model):
"""Wrap a model that should run on CPU, transferring inputs and outputs
as necessary."""
model.to_cpu()
def with_cpu_forward(inputs, drop=0.0):
cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop)
gpu_outputs = _to_device(ops, cpu_outputs)
def with_cpu_backprop(d_outputs, sgd=None):
cpu_d_outputs = _to_cpu(d_outputs)
return backprop(cpu_d_outputs, sgd=sgd)
return gpu_outputs, with_cpu_backprop
return wrap(with_cpu_forward, model)
def _to_cpu(X):
if isinstance(X, numpy.ndarray):
return X
elif isinstance(X, tuple):
return tuple([_to_cpu(x) for x in X])
elif isinstance(X, list):
return [_to_cpu(x) for x in X]
elif hasattr(X, "get"):
return X.get()
else:
return X
def _to_device(ops, X):
if isinstance(X, tuple):
return tuple([_to_device(ops, x) for x in X])
elif isinstance(X, list):
return [_to_device(ops, x) for x in X]
else:
return ops.asarray(X)
class extract_ngrams(Model):
def __init__(self, ngram_size, attr=LOWER):
Model.__init__(self)
self.ngram_size = ngram_size
self.attr = attr
def begin_update(self, docs, drop=0.0):
batch_keys = []
batch_vals = []
for doc in docs:
unigrams = doc.to_array([self.attr])
ngrams = [unigrams]
for n in range(2, self.ngram_size + 1):
ngrams.append(self.ops.ngrams(n, unigrams))
keys = self.ops.xp.concatenate(ngrams)
keys, vals = self.ops.xp.unique(keys, return_counts=True)
batch_keys.append(keys)
batch_vals.append(vals)
# The dtype here matches what thinc is expecting -- which differs per
# platform (by int definition). This should be fixed once the problem
# is fixed on Thinc's side.
lengths = self.ops.asarray(
[arr.shape[0] for arr in batch_keys], dtype=numpy.int_
)
batch_keys = self.ops.xp.concatenate(batch_keys)
batch_vals = self.ops.asarray(self.ops.xp.concatenate(batch_vals), dtype="f")
return (batch_keys, batch_vals, lengths), None
@describe.on_data(
_set_dimensions_if_needed, lambda model, X, y: model.init_weights(model)
)
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nO=Dimension("Output size"),
nP=Dimension("Maxout pieces"),
W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)),
pad=Synapses(
"Pad",
lambda obj: (1, obj.nF, obj.nO, obj.nP),
lambda M, ops: ops.normal_init(M, 1.0),
),
d_W=Gradient("W"),
d_pad=Gradient("pad"),
d_b=Gradient("b"),
)
class PrecomputableAffine(Model):
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nP = nP
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.0):
Yf = self.ops.gemm(
X, self.W.reshape((self.nF * self.nO * self.nP, self.nI)), trans2=True
)
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP))
Yf = self._add_padding(Yf)
def backward(dY_ids, sgd=None):
dY, ids = dY_ids
dY, ids = self._backprop_padding(dY, ids)
Xf = X[ids]
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
self.d_b += dY.sum(axis=0)
dY = dY.reshape((dY.shape[0], self.nO * self.nP))
Wopfi = self.W.transpose((1, 2, 0, 3))
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
Wopfi = Wopfi.reshape((self.nO * self.nP, self.nF * self.nI))
dXf = self.ops.gemm(dY.reshape((dY.shape[0], self.nO * self.nP)), Wopfi)
# Reuse the buffer
dWopfi = Wopfi
dWopfi.fill(0.0)
self.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
# (o, p, f, i) --> (f, o, p, i)
self.d_W += dWopfi.transpose((2, 0, 1, 3))
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
return Yf, backward
def _add_padding(self, Yf):
Yf_padded = self.ops.xp.vstack((self.pad, Yf))
return Yf_padded
def _backprop_padding(self, dY, ids):
# (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0
mask = ids < 0.0
mask = mask.sum(axis=1)
d_pad = dY * mask.reshape((ids.shape[0], 1, 1))
self.d_pad += d_pad.sum(axis=0)
return dY, ids
@staticmethod
def init_weights(model):
"""This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
"""
if (model.W ** 2).sum() != 0.0:
return
ops = model.ops
xp = ops.xp
ops.normal_init(model.W, model.nF * model.nI, inplace=True)
ids = ops.allocate((5000, model.nF), dtype="f")
ids += xp.random.uniform(0, 1000, ids.shape)
ids = ops.asarray(ids, dtype="i")
tokvecs = ops.allocate((5000, model.nI), dtype="f")
tokvecs += xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
tokvecs.shape
)
def predict(ids, tokvecs):
# nS ids. nW tokvecs. Exclude the padding array.
hiddens = model(tokvecs[:-1]) # (nW, f, o, p)
vectors = model.ops.allocate((ids.shape[0], model.nO * model.nP), dtype="f")
# need nS vectors
hiddens = hiddens.reshape(
(hiddens.shape[0] * model.nF, model.nO * model.nP)
)
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
vectors = vectors.reshape((vectors.shape[0], model.nO, model.nP))
vectors += model.b
vectors = model.ops.asarray(vectors)
if model.nP >= 2:
return model.ops.maxout(vectors)[0]
else:
return vectors * (vectors >= 0)
tol_var = 0.01
tol_mean = 0.01
t_max = 10
t_i = 0
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
var = model.ops.xp.var(acts1)
mean = model.ops.xp.mean(acts1)
if abs(var - 1.0) >= tol_var:
model.W /= model.ops.xp.sqrt(var)
elif abs(mean) >= tol_mean:
model.b -= mean
else:
break
def link_vectors_to_models(vocab):
vectors = vocab.vectors
if vectors.name is None:
vectors.name = VECTORS_KEY
if vectors.data.size != 0:
warnings.warn(Warnings.W020.format(shape=vectors.data.shape))
ops = Model.ops
for word in vocab:
if word.orth in vectors.key2row:
word.rank = vectors.key2row[word.orth]
else:
word.rank = util.OOV_RANK
data = ops.asarray(vectors.data)
# Set an entry here, so that vectors are accessed by StaticVectors
# (unideal, I know)
key = (ops.device, vectors.name)
if key in thinc.extra.load_nlp.VECTORS:
if thinc.extra.load_nlp.VECTORS[key].shape != data.shape:
# This is a hack to avoid the problem in #3853.
old_name = vectors.name
new_name = vectors.name + "_%d" % data.shape[0]
warnings.warn(Warnings.W019.format(old=old_name, new=new_name))
vectors.name = new_name
key = (ops.device, vectors.name)
thinc.extra.load_nlp.VECTORS[key] = data
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
import torch.nn
from thinc.api import with_square_sequences
from thinc.extra.wrappers import PyTorchWrapperRNN
if depth == 0:
return layerize(noop())
model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout)
return with_square_sequences(PyTorchWrapperRNN(model))
def Tok2Vec(width, embed_size, **kwargs):
if not USE_MODEL_REGISTRY_TOK2VEC:
# Preserve prior tok2vec for backwards compat, in v2.2.2
return _legacy_tok2vec.Tok2Vec(width, embed_size, **kwargs)
pretrained_vectors = kwargs.get("pretrained_vectors", None)
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
subword_features = kwargs.get("subword_features", True)
char_embed = kwargs.get("char_embed", False)
conv_depth = kwargs.get("conv_depth", 4)
bilstm_depth = kwargs.get("bilstm_depth", 0)
conv_window = kwargs.get("conv_window", 1)
cols = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
doc2feats_cfg = {"arch": "spacy.Doc2Feats.v1", "config": {"columns": cols}}
if char_embed:
embed_cfg = {
"arch": "spacy.CharacterEmbed.v1",
"config": {
"width": 64,
"chars": 6,
"@mix": {
"arch": "spacy.LayerNormalizedMaxout.v1",
"config": {"width": width, "pieces": 3},
},
"@embed_features": None,
},
}
else:
embed_cfg = {
"arch": "spacy.MultiHashEmbed.v1",
"config": {
"width": width,
"rows": embed_size,
"columns": cols,
"use_subwords": subword_features,
"@pretrained_vectors": None,
"@mix": {
"arch": "spacy.LayerNormalizedMaxout.v1",
"config": {"width": width, "pieces": 3},
},
},
}
if pretrained_vectors:
embed_cfg["config"]["@pretrained_vectors"] = {
"arch": "spacy.PretrainedVectors.v1",
"config": {
"vectors_name": pretrained_vectors,
"width": width,
"column": cols.index("ID"),
},
}
if cnn_maxout_pieces >= 2:
cnn_cfg = {
"arch": "spacy.MaxoutWindowEncoder.v1",
"config": {
"width": width,
"window_size": conv_window,
"pieces": cnn_maxout_pieces,
"depth": conv_depth,
},
}
else:
cnn_cfg = {
"arch": "spacy.MishWindowEncoder.v1",
"config": {"width": width, "window_size": conv_window, "depth": conv_depth},
}
bilstm_cfg = {
"arch": "spacy.TorchBiLSTMEncoder.v1",
"config": {"width": width, "depth": bilstm_depth},
}
if conv_depth == 0 and bilstm_depth == 0:
encode_cfg = {}
elif conv_depth >= 1 and bilstm_depth >= 1:
encode_cfg = {
"arch": "thinc.FeedForward.v1",
"config": {"children": [cnn_cfg, bilstm_cfg]},
}
elif conv_depth >= 1:
encode_cfg = cnn_cfg
else:
encode_cfg = bilstm_cfg
config = {"@doc2feats": doc2feats_cfg, "@embed": embed_cfg, "@encode": encode_cfg}
return new_ml.Tok2Vec(config)
def reapply(layer, n_times):
def reapply_fwd(X, drop=0.0):
backprops = []
for i in range(n_times):
Y, backprop = layer.begin_update(X, drop=drop)
X = Y
backprops.append(backprop)
def reapply_bwd(dY, sgd=None):
dX = None
for backprop in reversed(backprops):
dY = backprop(dY, sgd=sgd)
if dX is None:
dX = dY
else:
dX += dY
return dX
return Y, reapply_bwd
return wrap(reapply_fwd, layer)
def asarray(ops, dtype):
def forward(X, drop=0.0):
return ops.asarray(X, dtype=dtype), None
return layerize(forward)
def _divide_array(X, size):
parts = []
index = 0
while index < len(X):
parts.append(X[index : index + size])
index += size
return parts
def get_col(idx):
if idx < 0:
raise IndexError(Errors.E066.format(value=idx))
def forward(X, drop=0.0):
if isinstance(X, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
def backward(y, sgd=None):
dX = ops.allocate(X.shape)
dX[:, idx] += y
return dX
return output, backward
return layerize(forward)
def doc2feats(cols=None):
if cols is None:
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
def forward(docs, drop=0.0):
feats = []
for doc in docs:
feats.append(doc.to_array(cols))
return feats, None
model = layerize(forward)
model.cols = cols
return model
def print_shape(prefix):
def forward(X, drop=0.0):
return X, lambda dX, **kwargs: dX
return layerize(forward)
@layerize
def get_token_vectors(tokens_attrs_vectors, drop=0.0):
tokens, attrs, vectors = tokens_attrs_vectors
def backward(d_output, sgd=None):
return (tokens, d_output)
return vectors, backward
@layerize
def logistic(X, drop=0.0):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10.0, X)
X = xp.maximum(X, -10.0, X)
Y = 1.0 / (1.0 + xp.exp(-X))
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1 - Y))
return dX
return Y, logistic_bwd
def zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
return model
def getitem(i):
def getitem_fwd(X, drop=0.0):
return X[i], None
return layerize(getitem_fwd)
@describe.attributes(
W=Synapses("Weights matrix", lambda obj: (obj.nO, obj.nI), lambda W, ops: None)
)
class MultiSoftmax(Affine):
"""Neural network layer that predicts several multi-class attributes at once.
For instance, we might predict one class with 6 variables, and another with 5.
We predict the 11 neurons required for this, and then softmax them such
that columns 0-6 make a probability distribution and coumns 6-11 make another.
"""
name = "multisoftmax"
def __init__(self, out_sizes, nI=None, **kwargs):
Model.__init__(self, **kwargs)
self.out_sizes = out_sizes
self.nO = sum(out_sizes)
self.nI = nI
def predict(self, input__BI):
output__BO = self.ops.affine(self.W, self.b, input__BI)
i = 0
for out_size in self.out_sizes:
self.ops.softmax(output__BO[:, i : i + out_size], inplace=True)
i += out_size
return output__BO
def begin_update(self, input__BI, drop=0.0):
output__BO = self.predict(input__BI)
def finish_update(grad__BO, sgd=None):
self.d_W += self.ops.gemm(grad__BO, input__BI, trans1=True)
self.d_b += grad__BO.sum(axis=0)
grad__BI = self.ops.gemm(grad__BO, self.W)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return grad__BI
return output__BO, finish_update
def build_tagger_model(nr_class, **cfg):
embed_size = util.env_opt("embed_size", 2000)
if "token_vector_width" in cfg:
token_vector_width = cfg["token_vector_width"]
else:
token_vector_width = util.env_opt("token_vector_width", 96)
pretrained_vectors = cfg.get("pretrained_vectors")
subword_features = cfg.get("subword_features", True)
with Model.define_operators({">>": chain, "+": add}):
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]
else:
tok2vec = Tok2Vec(
token_vector_width,
embed_size,
subword_features=subword_features,
pretrained_vectors=pretrained_vectors,
)
softmax = with_flatten(Softmax(nr_class, token_vector_width))
model = tok2vec >> softmax
model.nI = None
model.tok2vec = tok2vec
model.softmax = softmax
return model
def build_morphologizer_model(class_nums, **cfg):
embed_size = util.env_opt("embed_size", 7000)
if "token_vector_width" in cfg:
token_vector_width = cfg["token_vector_width"]
else:
token_vector_width = util.env_opt("token_vector_width", 128)
pretrained_vectors = cfg.get("pretrained_vectors")
char_embed = cfg.get("char_embed", True)
with Model.define_operators({">>": chain, "+": add, "**": clone}):
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]
else:
tok2vec = Tok2Vec(
token_vector_width,
embed_size,
char_embed=char_embed,
pretrained_vectors=pretrained_vectors,
)
softmax = with_flatten(MultiSoftmax(class_nums, token_vector_width))
softmax.out_sizes = class_nums
model = tok2vec >> softmax
model.nI = None
model.tok2vec = tok2vec
model.softmax = softmax
return model
@layerize
def SpacyVectors(docs, drop=0.0):
batch = []
for doc in docs:
indices = numpy.zeros((len(doc),), dtype="i")
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
vectors = doc.vocab.vectors.data[indices]
batch.append(vectors)
return batch, None
def build_text_classifier(nr_class, width=64, **cfg):
depth = cfg.get("depth", 2)
nr_vector = cfg.get("nr_vector", 5000)
pretrained_dims = cfg.get("pretrained_dims", 0)
with Model.define_operators({">>": chain, "+": add, "|": concatenate, "**": clone}):
if cfg.get("low_data") and pretrained_dims:
model = (
SpacyVectors
>> flatten_add_lengths
>> with_getitem(0, Affine(width, pretrained_dims))
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(ReLu(width, width)) ** 2
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
>> logistic
)
return model
lower = HashEmbed(width, nr_vector, column=1)
prefix = HashEmbed(width // 2, nr_vector, column=2)
suffix = HashEmbed(width // 2, nr_vector, column=3)
shape = HashEmbed(width // 2, nr_vector, column=4)
trained_vectors = FeatureExtracter(
[ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
) >> with_flatten(
uniqued(
(lower | prefix | suffix | shape)
>> LN(Maxout(width, width + (width // 2) * 3)),
column=0,
)
)
if pretrained_dims:
static_vectors = SpacyVectors >> with_flatten(
Affine(width, pretrained_dims)
)
# TODO Make concatenate support lists
vectors = concatenate_lists(trained_vectors, static_vectors)
vectors_width = width * 2
else:
vectors = trained_vectors
vectors_width = width
static_vectors = None
tok2vec = vectors >> with_flatten(
LN(Maxout(width, vectors_width))
>> Residual((ExtractWindow(nW=1) >> LN(Maxout(width, width * 3)))) ** depth,
pad=depth,
)
cnn_model = (
tok2vec
>> flatten_add_lengths
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(zero_init(Maxout(width, width)))
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
)
linear_model = build_bow_text_classifier(
nr_class,
ngram_size=cfg.get("ngram_size", 1),
exclusive_classes=cfg.get("exclusive_classes", False),
)
if cfg.get("exclusive_classes", False):
output_layer = Softmax(nr_class, nr_class * 2)
else:
output_layer = (
zero_init(Affine(nr_class, nr_class * 2, drop_factor=0.0)) >> logistic
)
model = (linear_model | cnn_model) >> output_layer
model.tok2vec = chain(tok2vec, flatten)
model.nO = nr_class
model.lsuv = False
return model
def build_bow_text_classifier(
nr_class, ngram_size=1, exclusive_classes=False, no_output_layer=False, **cfg
):
with Model.define_operators({">>": chain}):
model = with_cpu(
Model.ops, extract_ngrams(ngram_size, attr=ORTH) >> LinearModel(nr_class)
)
if not no_output_layer:
model = model >> (cpu_softmax if exclusive_classes else logistic)
model.nO = nr_class
return model
@layerize
def cpu_softmax(X, drop=0.0):
ops = NumpyOps()
def cpu_softmax_backward(dY, sgd=None):
return dY
return ops.softmax(X), cpu_softmax_backward
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, **cfg):
"""
Build a simple CNN text classifier, given a token-to-vector model as inputs.
If exclusive_classes=True, a softmax non-linearity is applied, so that the
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
is applied instead, so that outputs are in the range [0, 1].
"""
with Model.define_operators({">>": chain}):
if exclusive_classes:
output_layer = Softmax(nr_class, tok2vec.nO)
else:
output_layer = (
zero_init(Affine(nr_class, tok2vec.nO, drop_factor=0.0)) >> logistic
)
model = tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> output_layer
model.tok2vec = chain(tok2vec, flatten)
model.nO = nr_class
return model
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
if "entity_width" not in cfg:
raise ValueError(Errors.E144.format(param="entity_width"))
conv_depth = cfg.get("conv_depth", 2)
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
pretrained_vectors = cfg.get("pretrained_vectors", None)
context_width = cfg.get("entity_width")
with Model.define_operators({">>": chain, "**": clone}):
# context encoder
tok2vec = Tok2Vec(
width=hidden_width,
embed_size=embed_width,
pretrained_vectors=pretrained_vectors,
cnn_maxout_pieces=cnn_maxout_pieces,
subword_features=True,
conv_depth=conv_depth,
bilstm_depth=0,
)
model = (
tok2vec
>> flatten_add_lengths
>> Pooling(mean_pool)
>> Residual(zero_init(Maxout(hidden_width, hidden_width)))
>> zero_init(Affine(context_width, hidden_width, drop_factor=0.0))
)
model.tok2vec = tok2vec
model.nO = context_width
return model
@layerize
def flatten(seqs, drop=0.0):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=0)
X = ops.flatten(seqs, pad=0)
return X, finish_update
def concatenate_lists(*layers, **kwargs): # pragma: no cover
"""Compose two or more models `f`, `g`, etc, such that their outputs are
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
"""
if not layers:
return noop()
drop_factor = kwargs.get("drop_factor", 1.0)
ops = layers[0].ops
layers = [chain(layer, flatten) for layer in layers]
concat = concatenate(*layers)
def concatenate_lists_fwd(Xs, drop=0.0):
if drop is not None:
drop *= drop_factor
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
ys = ops.unflatten(flat_y, lengths)
def concatenate_lists_bwd(d_ys, sgd=None):
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
return ys, concatenate_lists_bwd
model = wrap(concatenate_lists_fwd, concat)
return model
def masked_language_model(vocab, model, mask_prob=0.15):
"""Convert a model into a BERT-style masked language model"""
random_words = _RandomWords(vocab)
def mlm_forward(docs, drop=0.0):
mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
output, backprop = model.begin_update(docs, drop=drop)
def mlm_backward(d_output, sgd=None):
d_output *= 1 - mask
return backprop(d_output, sgd=sgd)
return output, mlm_backward
return wrap(mlm_forward, model)
class _RandomWords(object):
def __init__(self, vocab):
self.words = [lex.text for lex in vocab if lex.prob != 0.0]
self.probs = [lex.prob for lex in vocab if lex.prob != 0.0]
self.words = self.words[:10000]
self.probs = self.probs[:10000]
self.probs = numpy.exp(numpy.array(self.probs, dtype="f"))
self.probs /= self.probs.sum()
self._cache = []
def next(self):
if not self._cache:
self._cache.extend(
numpy.random.choice(len(self.words), 10000, p=self.probs)
)
index = self._cache.pop()
return self.words[index]
def _apply_mask(docs, random_words, mask_prob=0.15):
# This needs to be here to avoid circular imports
from .tokens.doc import Doc
N = sum(len(doc) for doc in docs)
mask = numpy.random.uniform(0.0, 1.0, (N,))
mask = mask >= mask_prob
i = 0
masked_docs = []
for doc in docs:
words = []
for token in doc:
if not mask[i]:
word = _replace_word(token.text, random_words)
else:
word = token.text
words.append(word)
i += 1
spaces = [bool(w.whitespace_) for w in doc]
# NB: If you change this implementation to instead modify
# the docs in place, take care that the IDs reflect the original
# words. Currently we use the original docs to make the vectors
# for the target, so we don't lose the original tokens. But if
# you modified the docs in place here, you would.
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
return mask, masked_docs
def _replace_word(word, random_words, mask="[MASK]"):
roll = numpy.random.random()
if roll < 0.8:
return mask
elif roll < 0.9:
return random_words.next()
else:
return word
def _uniform_init(lo, hi):
def wrapped(W, ops):
copy_array(W, ops.xp.random.uniform(lo, hi, W.shape))
return wrapped
@describe.attributes(
nM=Dimension("Vector dimensions"),
nC=Dimension("Number of characters per word"),
vectors=Synapses(
"Embed matrix", lambda obj: (obj.nC, obj.nV, obj.nM), _uniform_init(-0.1, 0.1)
),
d_vectors=Gradient("vectors"),
)
class CharacterEmbed(Model):
def __init__(self, nM=None, nC=None, **kwargs):
Model.__init__(self, **kwargs)
self.nM = nM
self.nC = nC
@property
def nO(self):
return self.nM * self.nC
@property
def nV(self):
return 256
def begin_update(self, docs, drop=0.0):
if not docs:
return []
ids = []
output = []
weights = self.vectors
# This assists in indexing; it's like looping over this dimension.
# Still consider this weird witch craft...But thanks to Mark Neumann
# for the tip.
nCv = self.ops.xp.arange(self.nC)
for doc in docs:
doc_ids = doc.to_utf8_array(nr_char=self.nC)
doc_vectors = self.ops.allocate((len(doc), self.nC, self.nM))
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
# incantation do I chant to get
# output[i, j, k] == data[j, ids[i, j], k]?
doc_vectors[:, nCv] = weights[nCv, doc_ids[:, nCv]]
output.append(doc_vectors.reshape((len(doc), self.nO)))
ids.append(doc_ids)
def backprop_character_embed(d_vectors, sgd=None):
gradient = self.d_vectors
for doc_ids, d_doc_vectors in zip(ids, d_vectors):
d_doc_vectors = d_doc_vectors.reshape((len(doc_ids), self.nC, self.nM))
gradient[nCv, doc_ids[:, nCv]] += d_doc_vectors[:, nCv]
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return None
return output, backprop_character_embed
def get_cossim_loss(yh, y, ignore_zeros=False):
xp = get_array_module(yh)
# Find the zero vectors
if ignore_zeros:
zero_indices = xp.abs(y).sum(axis=1) == 0
# Add a small constant to avoid 0 vectors
yh = yh + 1e-8
y = y + 1e-8
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
mul_norms = norm_yh * norm_y
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
losses = xp.abs(cosine - 1)
if ignore_zeros:
# If the target was a zero vector, don't count it in the loss.
d_yh[zero_indices] = 0
losses[zero_indices] = 0
loss = losses.sum()
return loss, -d_yh