spaCy/docs/source/quickstart.rst

199 lines
7.6 KiB
ReStructuredText

Quick Start
===========
Install
-------
.. py:currentmodule:: spacy
.. code:: bash
$ pip install spacy
$ python -m spacy.en.download
The download command fetches and installs the parser model and word representations,
which are too big to host on PyPi (about 100mb each). The data is installed within
the spacy.en package directory.
Usage
-----
The main entry-point is :meth:`en.English.__call__`, which accepts a unicode string
as an argument, and returns a :py:class:`tokens.Tokens` object. You can
iterate over it to get :py:class:`tokens.Token` objects, which provide
a convenient API:
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp(u'I ate the pizza with anchovies.')
>>> pizza = tokens[3]
>>> (pizza.orth, pizza.orth_, pizza.head.lemma, pizza.head.lemma_)
... (14702, u'pizza', 14702, u'ate')
spaCy maps all strings to sequential integer IDs --- a common idiom in NLP.
If an attribute `Token.foo` is an integer ID, then `Token.foo_` is the string,
e.g. `pizza.orth_` and `pizza.orth` provide the integer ID and the string of
the original orthographic form of the word, with no string normalizations
applied.
.. note::
en.English.__call__ is stateful --- it has an important **side-effect**:
spaCy maps strings to sequential integers, so when it processes a new
word, the mapping table is updated.
Future releases will feature a way to reconcile :py:class:`strings.StringStore`
mappings, but for now, you should only work with one instance of the pipeline
at a time.
This issue only affects rare words. spaCy's pre-compiled lexicon has 260,000
words; the string IDs for these words will always be consistent.
(Most of the) API at a glance
-----------------------------
**Process the string:**
.. py:class:: spacy.en.English(self, data_dir=join(dirname(__file__), 'data'))
.. py:method:: __call__(self, text: unicode, tag=True, parse=False) --> Tokens
+-----------------+--------------+--------------+
| Attribute | Type | Its API |
+=================+==============+==============+
| vocab | Vocab | __getitem__ |
+-----------------+--------------+--------------+
| vocab.strings | StingStore | __getitem__ |
+-----------------+--------------+--------------+
| tokenizer | Tokenizer | __call__ |
+-----------------+--------------+--------------+
| tagger | EnPosTagger | __call__ |
+-----------------+--------------+--------------+
| parser | GreedyParser | __call__ |
+-----------------+--------------+--------------+
**Get dict or numpy array:**
.. py:method:: tokens.Tokens.to_array(self, attr_ids: List[int]) --> numpy.ndarray[ndim=2, dtype=int32]
.. py:method:: tokens.Tokens.count_by(self, attr_id: int) --> Dict[int, int]
**Get Token objects**
.. py:method:: tokens.Tokens.__getitem__(self, i) --> Token
.. py:method:: tokens.Tokens.__iter__(self) --> Iterator[Token]
**Embedded word representenations**
.. py:attribute:: tokens.Token.repvec
.. py:attribute:: lexeme.Lexeme.repvec
**Navigate dependency parse**
.. py:method:: nbor(self, i=1) --> Token
.. py:method:: child(self, i=1) --> Token
.. py:method:: sibling(self, i=1) --> Token
.. py:attribute:: head: Token
.. py:attribute:: dep: int
**Align to original string**
.. py:attribute:: string: unicode
Padded with original whitespace.
.. py:attribute:: length: int
Length, in unicode code-points. Equal to len(self.orth_).
self.string[self.length:] gets whitespace.
.. py:attribute:: idx: int
Starting offset of word in the original string.
Features
--------
**Boolean features**
>>> lexeme = nlp.vocab[u'Apple']
>>> lexeme.is_alpha, is_upper
True, False
>>> tokens = nlp(u'Apple computers')
>>> tokens[0].is_alpha, tokens[0].is_upper
>>> True, False
>>> from spact.en.attrs import IS_ALPHA, IS_UPPER
>>> tokens.to_array((IS_ALPHA, IS_UPPER))[0]
array([1, 0])
+----------+---------------------------------------------------------------+
| is_alpha | :py:meth:`str.isalpha` |
+----------+---------------------------------------------------------------+
| is_digit | :py:meth:`str.isdigit` |
+----------+---------------------------------------------------------------+
| is_lower | :py:meth:`str.islower` |
+----------+---------------------------------------------------------------+
| is_title | :py:meth:`str.istitle` |
+----------+---------------------------------------------------------------+
| is_upper | :py:meth:`str.isupper` |
+----------+---------------------------------------------------------------+
| is_ascii | all(ord(c) < 128 for c in string) |
+----------+---------------------------------------------------------------+
| is_punct | all(unicodedata.category(c).startswith('P') for c in string) |
+----------+---------------------------------------------------------------+
| like_url | Using various heuristics, does the string resemble a URL? |
+----------+---------------------------------------------------------------+
| like_num | "Two", "10", "1,000", "10.54", "1/2" etc all match |
+----------+---------------------------------------------------------------+
**String-transform Features**
+----------+---------------------------------------------------------------+
| orth | The original string, unmodified. |
+----------+---------------------------------------------------------------+
| lower | The original string, forced to lower-case |
+----------+---------------------------------------------------------------+
| norm | The string after additional normalization |
+----------+---------------------------------------------------------------+
| shape | Word shape, e.g. 10 --> dd, Garden --> Xxxx, Hi!5 --> Xx!d |
+----------+---------------------------------------------------------------+
| prefix | A short slice from the start of the string. |
+----------+---------------------------------------------------------------+
| suffix | A short slice from the end of the string. |
+----------+---------------------------------------------------------------+
| lemma | The word's lemma, i.e. morphological suffixes removed |
+----------+---------------------------------------------------------------+
**Syntactic labels**
+----------+---------------------------------------------------------------+
| pos | The word's part-of-speech, from the Google Universal Tag Set |
+----------+---------------------------------------------------------------+
| tag | A fine-grained morphosyntactic tag, e.g. VBZ, NNS, etc |
+----------+---------------------------------------------------------------+
| dep | Dependency type label between word and its head, e.g. subj |
+----------+---------------------------------------------------------------+
**Distributional**
+---------+-----------------------------------------------------------+
| cluster | Brown cluster ID of the word |
+---------+-----------------------------------------------------------+
| prob | Log probability of word, smoothed with Simple Good-Turing |
+---------+-----------------------------------------------------------+