mirror of https://github.com/explosion/spaCy.git
78 lines
4.9 KiB
ReStructuredText
78 lines
4.9 KiB
ReStructuredText
Lexeme Features
|
|
===============
|
|
|
|
A lexeme is an entry in the lexicon --- the vocabulary --- for a word, punctuation
|
|
symbol, whitespace unit, etc. Lexemes come with lots of pre-computed information,
|
|
that help you write good feature functions. Features are integer-valued where
|
|
possible --- instead of strings, spaCy refers to strings by consecutive ID numbers,
|
|
which you can use to look up the string values if necessary.
|
|
|
|
String features
|
|
---------------
|
|
|
|
+---------+-------------------------------------------------------------------+
|
|
| SIC | The word as it appeared in the sentence, unaltered. |
|
|
+---------+-------------------------------------------------------------------+
|
|
| NORM | For frequent words, case normalization is applied. |
|
|
| | Otherwise, back-off to SHAPE. |
|
|
+---------+-------------------------------------------------------------------+
|
|
| SHAPE | Remap the characters of the word as follows: |
|
|
| | |
|
|
| | a-z --> x, A-Z --> X, 0-9 --> d, ,.;:"'?!$- --> self, other --> \*|
|
|
| | |
|
|
| | Trim sequences of length 3+ to 3, e.g |
|
|
| | |
|
|
| | apples --> xxx, Apples --> Xxxx, app9LES@ --> xxx9XXX* |
|
|
+---------+-------------------------------------------------------------------+
|
|
| ASCIIED | Use unidecode.unidecode(sic) to approximate the word using the |
|
|
| | ascii characters. |
|
|
+---------+-------------------------------------------------------------------+
|
|
| PREFIX | sic_unicode_string[:1] |
|
|
+---------+-------------------------------------------------------------------+
|
|
| SUFFIX | sic_unicode_string[-3:] |
|
|
+---------+-------------------------------------------------------------------+
|
|
|
|
|
|
Integer features
|
|
----------------
|
|
|
|
+--------------+--------------------------------------------------------------+
|
|
| LENGTH | Length of the string, in unicode |
|
|
+--------------+--------------------------------------------------------------+
|
|
| CLUSTER | Brown cluster |
|
|
+--------------+--------------------------------------------------------------+
|
|
| POS_TYPE | K-means cluster of word's tag affinities |
|
|
+--------------+--------------------------------------------------------------+
|
|
| SENSE_TYPE | K-means cluster of word's sense affinities |
|
|
+--------------+--------------------------------------------------------------+
|
|
|
|
Boolean features
|
|
----------------
|
|
|
|
+-------------+--------------------------------------------------------------+
|
|
| IS_ALPHA | The result of sic.isalpha() |
|
|
+-------------+--------------------------------------------------------------+
|
|
| IS_ASCII | Check whether all the word's characters are ascii characters |
|
|
+-------------+--------------------------------------------------------------+
|
|
| IS_DIGIT | The result of sic.isdigit() |
|
|
+-------------+--------------------------------------------------------------+
|
|
| IS_LOWER | The result of sic.islower() |
|
|
+-------------+--------------------------------------------------------------+
|
|
| IS_PUNCT | Check whether all characters are in the class TODO |
|
|
+-------------+--------------------------------------------------------------+
|
|
| IS_SPACE | The result of sic.isspace() |
|
|
+-------------+--------------------------------------------------------------+
|
|
| IS_TITLE | The result of sic.istitle() |
|
|
+-------------+--------------------------------------------------------------+
|
|
| IS_UPPER | The result of sic.isupper() |
|
|
+-------------+--------------------------------------------------------------+
|
|
| LIKE_URL | Check whether the string looks like it could be a URL. Aims |
|
|
| | for low false negative rate. |
|
|
+-------------+--------------------------------------------------------------+
|
|
| LIKE_NUMBER | Check whether the string looks like it could be a numeric |
|
|
| | entity, e.g. 10,000 10th .10 . Skews for low false negative |
|
|
| | rate. |
|
|
+-------------+--------------------------------------------------------------+
|
|
| IN_LIST | Facility for loading arbitrary run-time word lists? |
|
|
+-------------+--------------------------------------------------------------+
|