spaCy/spacy/cli/train.py

388 lines
16 KiB
Python

from typing import Optional, Dict, Any, Tuple, Union, Callable, List
from timeit import default_timer as timer
import tqdm
from pathlib import Path
from wasabi import msg
import thinc
import thinc.schedules
from thinc.api import Config, Optimizer, require_gpu, fix_random_seed, set_gpu_allocator
import random
import typer
import logging
from .init_pipeline import init_pipeline
from .init_pipeline import create_before_to_disk_callback
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code
from ..language import Language
from .. import util
from ..errors import Errors
from ..util import resolve_dot_names, registry
from ..schemas import ConfigSchemaTraining
@app.command(
"train", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
)
def train_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
"""
Train or update a spaCy pipeline. Requires data in spaCy's binary format. To
convert data from other formats, use the `spacy convert` command. The
config file includes all settings and hyperparameters used during traing.
To override settings in the config, e.g. settings that point to local
paths or that you want to experiment with, you can override them as
command line options. For instance, --training.batch_size 128 overrides
the value of "batch_size" in the block "[training]". The --code argument
lets you pass in a Python file that's imported before training. It can be
used to register custom functions and architectures that can then be
referenced in the config.
DOCS: https://nightly.spacy.io/api/cli#train
"""
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
verify_cli_args(config_path, output_path)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
if use_gpu >= 0:
msg.info(f"Using GPU: {use_gpu}")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
config = util.load_config(config_path, overrides=overrides, interpolate=False)
msg.divider("Initializing pipeline")
nlp = init_nlp(config, output_path)
msg.divider("Training pipeline")
train(nlp, output_path, use_gpu=use_gpu)
def init_nlp(config: Config, output_path: Optional[Path]) -> Language:
if output_path is not None:
init_path = output_path / "model-initial"
if not init_path.exists():
msg.info(f"Initializing the pipeline in {init_path}")
nlp = init_pipeline(config)
nlp.to_disk(init_path)
msg.good(f"Saved initialized pipeline to {init_path}")
else:
nlp = util.load_model(init_path)
if must_reinitialize(config, nlp.config):
msg.warn("Config has changed: need to re-initialize pipeline")
nlp = init_pipeline(config)
nlp.to_disk(init_path)
msg.good(f"Re-initialized pipeline in {init_path}")
else:
msg.good(f"Loaded initialized pipeline from {init_path}")
return nlp
msg.warn(
"Not saving initialized model: no output directory specified. "
"To speed up training, spaCy can save the initialized nlp object with "
"the vocabulary, vectors and label scheme. To take advantage of this, "
"provide an output directory."
)
return init_pipeline(config)
def train(
nlp: Language, output_path: Optional[Path] = None, *, use_gpu: int = -1
) -> None:
# Create iterator, which yields out info after each optimization step.
config = nlp.config.interpolate()
if config["training"]["seed"] is not None:
fix_random_seed(config["training"]["seed"])
allocator = config["training"]["gpu_allocator"]
if use_gpu >= 0 and allocator:
set_gpu_allocator(allocator)
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
dot_names = [T["train_corpus"], T["dev_corpus"]]
train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
optimizer = T["optimizer"]
score_weights = T["score_weights"]
batcher = T["batcher"]
train_logger = T["logger"]
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
# Components that shouldn't be updated during training
frozen_components = T["frozen_components"]
# Create iterator, which yields out info after each optimization step.
training_step_iterator = train_while_improving(
nlp,
optimizer,
create_train_batches(train_corpus(nlp), batcher, T["max_epochs"]),
create_evaluation_callback(nlp, dev_corpus, score_weights),
dropout=T["dropout"],
accumulate_gradient=T["accumulate_gradient"],
patience=T["patience"],
max_steps=T["max_steps"],
eval_frequency=T["eval_frequency"],
exclude=frozen_components,
)
msg.info(f"Pipeline: {nlp.pipe_names}")
if frozen_components:
msg.info(f"Frozen components: {frozen_components}")
msg.info(f"Initial learn rate: {optimizer.learn_rate}")
with nlp.select_pipes(disable=frozen_components):
print_row, finalize_logger = train_logger(nlp)
try:
progress = tqdm.tqdm(total=T["eval_frequency"], leave=False)
progress.set_description(f"Epoch 1")
for batch, info, is_best_checkpoint in training_step_iterator:
progress.update(1)
if is_best_checkpoint is not None:
progress.close()
print_row(info)
if is_best_checkpoint and output_path is not None:
with nlp.select_pipes(disable=frozen_components):
update_meta(T, nlp, info)
with nlp.use_params(optimizer.averages):
nlp = before_to_disk(nlp)
nlp.to_disk(output_path / "model-best")
progress = tqdm.tqdm(total=T["eval_frequency"], leave=False)
progress.set_description(f"Epoch {info['epoch']}")
except Exception as e:
finalize_logger()
if output_path is not None:
# We don't want to swallow the traceback if we don't have a
# specific error.
msg.warn(
f"Aborting and saving the final best model. "
f"Encountered exception: {str(e)}"
)
nlp = before_to_disk(nlp)
nlp.to_disk(output_path / "model-final")
raise e
finally:
finalize_logger()
if output_path is not None:
final_model_path = output_path / "model-final"
if optimizer.averages:
with nlp.use_params(optimizer.averages):
nlp.to_disk(final_model_path)
else:
nlp.to_disk(final_model_path)
msg.good(f"Saved pipeline to output directory {final_model_path}")
def must_reinitialize(train_config: Config, init_config: Config) -> bool:
# TODO: do this better and more fine-grained
return train_config.interpolate().to_str() == init_config.interpolate().to_str()
def add_vectors(nlp: Language, vectors: str) -> None:
title = f"Config validation error for vectors {vectors}"
desc = (
"This typically means that there's a problem in the config.cfg included "
"with the packaged vectors. Make sure that the vectors package you're "
"loading is compatible with the current version of spaCy."
)
with show_validation_error(
title=title, desc=desc, hint_fill=False, show_config=False
):
util.load_vectors_into_model(nlp, vectors)
def create_train_batches(iterator, batcher, max_epochs: int):
epoch = 0
examples = list(iterator)
if not examples:
# Raise error if no data
raise ValueError(Errors.E986)
while max_epochs < 1 or epoch != max_epochs:
random.shuffle(examples)
for batch in batcher(examples):
yield epoch, batch
epoch += 1
def create_evaluation_callback(
nlp: Language, dev_corpus: Callable, weights: Dict[str, float]
) -> Callable[[], Tuple[float, Dict[str, float]]]:
weights = {key: value for key, value in weights.items() if value is not None}
def evaluate() -> Tuple[float, Dict[str, float]]:
dev_examples = list(dev_corpus(nlp))
scores = nlp.evaluate(dev_examples)
# Calculate a weighted sum based on score_weights for the main score.
# We can only consider scores that are ints/floats, not dicts like
# entity scores per type etc.
for key, value in scores.items():
if key in weights and not isinstance(value, (int, float)):
raise ValueError(Errors.E915.format(name=key, score_type=type(value)))
try:
weighted_score = sum(
scores.get(s, 0.0) * weights.get(s, 0.0) for s in weights
)
except KeyError as e:
keys = list(scores.keys())
err = Errors.E983.format(dict="score_weights", key=str(e), keys=keys)
raise KeyError(err) from None
return weighted_score, scores
return evaluate
def train_while_improving(
nlp: Language,
optimizer: Optimizer,
train_data,
evaluate,
*,
dropout: float,
eval_frequency: int,
accumulate_gradient: int,
patience: int,
max_steps: int,
exclude: List[str],
):
"""Train until an evaluation stops improving. Works as a generator,
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
where info is a dict, and is_best_checkpoint is in [True, False, None] --
None indicating that the iteration was not evaluated as a checkpoint.
The evaluation is conducted by calling the evaluate callback.
Positional arguments:
nlp: The spaCy pipeline to evaluate.
optimizer: The optimizer callable.
train_data (Iterable[Batch]): A generator of batches, with the training
data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
data iterable needs to take care of iterating over the epochs and
shuffling.
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
The callback should take no arguments and return a tuple
`(main_score, other_scores)`. The main_score should be a float where
higher is better. other_scores can be any object.
Every iteration, the function yields out a tuple with:
* batch: A list of Example objects.
* info: A dict with various information about the last update (see below).
* is_best_checkpoint: A value in None, False, True, indicating whether this
was the best evaluation so far. You should use this to save the model
checkpoints during training. If None, evaluation was not conducted on
that iteration. False means evaluation was conducted, but a previous
evaluation was better.
The info dict provides the following information:
epoch (int): How many passes over the data have been completed.
step (int): How many steps have been completed.
score (float): The main score from the last evaluation.
other_scores: : The other scores from the last evaluation.
losses: The accumulated losses throughout training.
checkpoints: A list of previous results, where each result is a
(score, step, epoch) tuple.
"""
if isinstance(dropout, float):
dropouts = thinc.schedules.constant(dropout)
else:
dropouts = dropout
results = []
losses = {}
words_seen = 0
start_time = timer()
for step, (epoch, batch) in enumerate(train_data):
dropout = next(dropouts)
for subbatch in subdivide_batch(batch, accumulate_gradient):
nlp.update(
subbatch, drop=dropout, losses=losses, sgd=False, exclude=exclude
)
# TODO: refactor this so we don't have to run it separately in here
for name, proc in nlp.pipeline:
if (
name not in exclude
and hasattr(proc, "model")
and proc.model not in (True, False, None)
):
proc.model.finish_update(optimizer)
optimizer.step_schedules()
if not (step % eval_frequency):
if optimizer.averages:
with nlp.use_params(optimizer.averages):
score, other_scores = evaluate()
else:
score, other_scores = evaluate()
results.append((score, step))
is_best_checkpoint = score == max(results)[0]
else:
score, other_scores = (None, None)
is_best_checkpoint = None
words_seen += sum(len(eg) for eg in batch)
info = {
"epoch": epoch,
"step": step,
"score": score,
"other_scores": other_scores,
"losses": losses,
"checkpoints": results,
"seconds": int(timer() - start_time),
"words": words_seen,
}
yield batch, info, is_best_checkpoint
if is_best_checkpoint is not None:
losses = {}
# Stop if no improvement in `patience` updates (if specified)
best_score, best_step = max(results)
if patience and (step - best_step) >= patience:
break
# Stop if we've exhausted our max steps (if specified)
if max_steps and step >= max_steps:
break
def subdivide_batch(batch, accumulate_gradient):
batch = list(batch)
batch.sort(key=lambda eg: len(eg.predicted))
sub_len = len(batch) // accumulate_gradient
start = 0
for i in range(accumulate_gradient):
subbatch = batch[start : start + sub_len]
if subbatch:
yield subbatch
start += len(subbatch)
subbatch = batch[start:]
if subbatch:
yield subbatch
def update_meta(
training: Union[Dict[str, Any], Config], nlp: Language, info: Dict[str, Any]
) -> None:
nlp.meta["performance"] = {}
for metric in training["score_weights"]:
if metric is not None:
nlp.meta["performance"][metric] = info["other_scores"].get(metric, 0.0)
for pipe_name in nlp.pipe_names:
nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
def verify_cli_args(config_path: Path, output_path: Optional[Path] = None) -> None:
# Make sure all files and paths exists if they are needed
if not config_path or not config_path.exists():
msg.fail("Config file not found", config_path, exits=1)
if output_path is not None:
if not output_path.exists():
output_path.mkdir()
msg.good(f"Created output directory: {output_path}")
# TODO: this is currently imported by the ray extension and not used otherwise
def load_from_paths(
config: Config,
) -> Tuple[List[Dict[str, str]], Dict[str, dict], bytes]:
weights_data = None
init_tok2vec = util.ensure_path(config["training"]["init_tok2vec"])
if init_tok2vec is not None:
if not init_tok2vec.exists():
msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
with init_tok2vec.open("rb") as file_:
weights_data = file_.read()
return None, {}, {}, weights_data