mirror of https://github.com/explosion/spaCy.git
364 lines
14 KiB
Python
364 lines
14 KiB
Python
from typing import Optional
|
|
import numpy
|
|
import time
|
|
import re
|
|
from collections import Counter
|
|
from pathlib import Path
|
|
from thinc.api import require_gpu, set_gpu_allocator
|
|
from thinc.api import set_dropout_rate, to_categorical, fix_random_seed
|
|
from thinc.api import Config, CosineDistance, L2Distance
|
|
from wasabi import msg
|
|
import srsly
|
|
from functools import partial
|
|
import typer
|
|
|
|
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
|
|
from ._util import import_code
|
|
from ..ml.models.multi_task import build_cloze_multi_task_model
|
|
from ..ml.models.multi_task import build_cloze_characters_multi_task_model
|
|
from ..tokens import Doc
|
|
from ..attrs import ID
|
|
from .. import util
|
|
from ..util import dot_to_object
|
|
|
|
|
|
@app.command(
|
|
"pretrain",
|
|
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
|
)
|
|
def pretrain_cli(
|
|
# fmt: off
|
|
ctx: typer.Context, # This is only used to read additional arguments
|
|
config_path: Path = Arg(..., help="Path to config file", exists=True, dir_okay=False),
|
|
output_dir: Path = Arg(..., help="Directory to write weights to on each epoch"),
|
|
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
|
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
|
|
epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using --resume-path. Prevents unintended overwriting of existing weight files."),
|
|
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
|
# fmt: on
|
|
):
|
|
"""
|
|
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
|
|
using an approximate language-modelling objective. Two objective types
|
|
are available, vector-based and character-based.
|
|
|
|
In the vector-based objective, we load word vectors that have been trained
|
|
using a word2vec-style distributional similarity algorithm, and train a
|
|
component like a CNN, BiLSTM, etc to predict vectors which match the
|
|
pretrained ones. The weights are saved to a directory after each epoch. You
|
|
can then pass a path to one of these pretrained weights files to the
|
|
'spacy train' command.
|
|
|
|
This technique may be especially helpful if you have little labelled data.
|
|
However, it's still quite experimental, so your mileage may vary.
|
|
|
|
To load the weights back in during 'spacy train', you need to ensure
|
|
all settings are the same between pretraining and training. Ideally,
|
|
this is done by using the same config file for both commands.
|
|
|
|
DOCS: https://nightly.spacy.io/api/cli#pretrain
|
|
"""
|
|
config_overrides = parse_config_overrides(ctx.args)
|
|
import_code(code_path)
|
|
verify_cli_args(config_path, output_dir, resume_path, epoch_resume)
|
|
if use_gpu >= 0:
|
|
msg.info("Using GPU")
|
|
require_gpu(use_gpu)
|
|
else:
|
|
msg.info("Using CPU")
|
|
msg.info(f"Loading config from: {config_path}")
|
|
|
|
with show_validation_error(config_path):
|
|
raw_config = util.load_config(
|
|
config_path, overrides=config_overrides, interpolate=False
|
|
)
|
|
config = raw_config.interpolate()
|
|
if not config.get("pretraining"):
|
|
# TODO: What's the solution here? How do we handle optional blocks?
|
|
msg.fail("The [pretraining] block in your config is empty", exits=1)
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
msg.good(f"Created output directory: {output_dir}")
|
|
# Save non-interpolated config
|
|
raw_config.to_disk(output_dir / "config.cfg")
|
|
msg.good("Saved config file in the output directory")
|
|
|
|
pretrain(
|
|
config,
|
|
output_dir,
|
|
resume_path=resume_path,
|
|
epoch_resume=epoch_resume,
|
|
use_gpu=use_gpu,
|
|
)
|
|
|
|
|
|
def pretrain(
|
|
config: Config,
|
|
output_dir: Path,
|
|
resume_path: Optional[Path] = None,
|
|
epoch_resume: Optional[int] = None,
|
|
use_gpu: int = -1,
|
|
):
|
|
if config["training"]["seed"] is not None:
|
|
fix_random_seed(config["training"]["seed"])
|
|
allocator = config["training"]["gpu_allocator"]
|
|
if use_gpu >= 0 and allocator:
|
|
set_gpu_allocator(allocator)
|
|
nlp = util.load_model_from_config(config)
|
|
C = util.resolve_training_config(nlp.config)
|
|
P_cfg = C["pretraining"]
|
|
corpus = dot_to_object(C, P_cfg["corpus"])
|
|
batcher = P_cfg["batcher"]
|
|
model = create_pretraining_model(nlp, C["pretraining"])
|
|
optimizer = C["pretraining"]["optimizer"]
|
|
# Load in pretrained weights to resume from
|
|
if resume_path is not None:
|
|
_resume_model(model, resume_path, epoch_resume)
|
|
else:
|
|
# Without '--resume-path' the '--epoch-resume' argument is ignored
|
|
epoch_resume = 0
|
|
|
|
tracker = ProgressTracker(frequency=10000)
|
|
msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}")
|
|
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
|
|
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
|
|
|
|
def _save_model(epoch, is_temp=False):
|
|
is_temp_str = ".temp" if is_temp else ""
|
|
with model.use_params(optimizer.averages):
|
|
with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_:
|
|
file_.write(model.get_ref("tok2vec").to_bytes())
|
|
log = {
|
|
"nr_word": tracker.nr_word,
|
|
"loss": tracker.loss,
|
|
"epoch_loss": tracker.epoch_loss,
|
|
"epoch": epoch,
|
|
}
|
|
with (output_dir / "log.jsonl").open("a") as file_:
|
|
file_.write(srsly.json_dumps(log) + "\n")
|
|
|
|
objective = create_objective(P_cfg["objective"])
|
|
# TODO: I think we probably want this to look more like the
|
|
# 'create_train_batches' function?
|
|
for epoch in range(epoch_resume, P_cfg["max_epochs"]):
|
|
for batch_id, batch in enumerate(batcher(corpus(nlp))):
|
|
docs = ensure_docs(batch)
|
|
loss = make_update(model, docs, optimizer, objective)
|
|
progress = tracker.update(epoch, loss, docs)
|
|
if progress:
|
|
msg.row(progress, **row_settings)
|
|
if P_cfg["n_save_every"] and (batch_id % P_cfg["n_save_every"] == 0):
|
|
_save_model(epoch, is_temp=True)
|
|
_save_model(epoch)
|
|
tracker.epoch_loss = 0.0
|
|
msg.good("Successfully finished pretrain")
|
|
|
|
|
|
def ensure_docs(examples_or_docs):
|
|
docs = []
|
|
for eg_or_doc in examples_or_docs:
|
|
if isinstance(eg_or_doc, Doc):
|
|
docs.append(eg_or_doc)
|
|
else:
|
|
docs.append(eg_or_doc.reference)
|
|
return docs
|
|
|
|
|
|
def _resume_model(model, resume_path, epoch_resume):
|
|
msg.info(f"Resume training tok2vec from: {resume_path}")
|
|
with resume_path.open("rb") as file_:
|
|
weights_data = file_.read()
|
|
model.get_ref("tok2vec").from_bytes(weights_data)
|
|
# Parse the epoch number from the given weight file
|
|
model_name = re.search(r"model\d+\.bin", str(resume_path))
|
|
if model_name:
|
|
# Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
|
|
epoch_resume = int(model_name.group(0)[5:][:-4]) + 1
|
|
msg.info(f"Resuming from epoch: {epoch_resume}")
|
|
else:
|
|
msg.info(f"Resuming from epoch: {epoch_resume}")
|
|
|
|
|
|
def make_update(model, docs, optimizer, objective_func):
|
|
"""Perform an update over a single batch of documents.
|
|
|
|
docs (iterable): A batch of `Doc` objects.
|
|
optimizer (callable): An optimizer.
|
|
RETURNS loss: A float for the loss.
|
|
"""
|
|
predictions, backprop = model.begin_update(docs)
|
|
loss, gradients = objective_func(model.ops, docs, predictions)
|
|
backprop(gradients)
|
|
model.finish_update(optimizer)
|
|
# Don't want to return a cupy object here
|
|
# The gradients are modified in-place by the BERT MLM,
|
|
# so we get an accurate loss
|
|
return float(loss)
|
|
|
|
|
|
def create_objective(config):
|
|
"""Create the objective for pretraining.
|
|
|
|
We'd like to replace this with a registry function but it's tricky because
|
|
we're also making a model choice based on this. For now we hard-code support
|
|
for two types (characters, vectors). For characters you can specify
|
|
n_characters, for vectors you can specify the loss.
|
|
|
|
Bleh.
|
|
"""
|
|
objective_type = config["type"]
|
|
if objective_type == "characters":
|
|
return partial(get_characters_loss, nr_char=config["n_characters"])
|
|
elif objective_type == "vectors":
|
|
if config["loss"] == "cosine":
|
|
return partial(
|
|
get_vectors_loss,
|
|
distance=CosineDistance(normalize=True, ignore_zeros=True),
|
|
)
|
|
elif config["loss"] == "L2":
|
|
return partial(
|
|
get_vectors_loss, distance=L2Distance(normalize=True, ignore_zeros=True)
|
|
)
|
|
else:
|
|
raise ValueError("Unexpected loss type", config["loss"])
|
|
else:
|
|
raise ValueError("Unexpected objective_type", objective_type)
|
|
|
|
|
|
def get_vectors_loss(ops, docs, prediction, distance):
|
|
"""Compute a loss based on a distance between the documents' vectors and
|
|
the prediction.
|
|
"""
|
|
# The simplest way to implement this would be to vstack the
|
|
# token.vector values, but that's a bit inefficient, especially on GPU.
|
|
# Instead we fetch the index into the vectors table for each of our tokens,
|
|
# and look them up all at once. This prevents data copying.
|
|
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
|
target = docs[0].vocab.vectors.data[ids]
|
|
d_target, loss = distance(prediction, target)
|
|
return loss, d_target
|
|
|
|
|
|
def get_characters_loss(ops, docs, prediction, nr_char):
|
|
"""Compute a loss based on a number of characters predicted from the docs."""
|
|
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
|
|
target_ids = target_ids.reshape((-1,))
|
|
target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
|
|
target = target.reshape((-1, 256 * nr_char))
|
|
diff = prediction - target
|
|
loss = (diff ** 2).sum()
|
|
d_target = diff / float(prediction.shape[0])
|
|
return loss, d_target
|
|
|
|
|
|
def create_pretraining_model(nlp, pretrain_config):
|
|
"""Define a network for the pretraining. We simply add an output layer onto
|
|
the tok2vec input model. The tok2vec input model needs to be a model that
|
|
takes a batch of Doc objects (as a list), and returns a list of arrays.
|
|
Each array in the output needs to have one row per token in the doc.
|
|
The actual tok2vec layer is stored as a reference, and only this bit will be
|
|
serialized to file and read back in when calling the 'train' command.
|
|
"""
|
|
component = nlp.get_pipe(pretrain_config["component"])
|
|
if pretrain_config.get("layer"):
|
|
tok2vec = component.model.get_ref(pretrain_config["layer"])
|
|
else:
|
|
tok2vec = component.model
|
|
|
|
# TODO
|
|
maxout_pieces = 3
|
|
hidden_size = 300
|
|
if pretrain_config["objective"]["type"] == "vectors":
|
|
model = build_cloze_multi_task_model(
|
|
nlp.vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
|
|
)
|
|
elif pretrain_config["objective"]["type"] == "characters":
|
|
model = build_cloze_characters_multi_task_model(
|
|
nlp.vocab,
|
|
tok2vec,
|
|
hidden_size=hidden_size,
|
|
maxout_pieces=maxout_pieces,
|
|
nr_char=pretrain_config["objective"]["n_characters"],
|
|
)
|
|
model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
|
|
set_dropout_rate(model, pretrain_config["dropout"])
|
|
return model
|
|
|
|
|
|
class ProgressTracker:
|
|
def __init__(self, frequency=1000000):
|
|
self.loss = 0.0
|
|
self.prev_loss = 0.0
|
|
self.nr_word = 0
|
|
self.words_per_epoch = Counter()
|
|
self.frequency = frequency
|
|
self.last_time = time.time()
|
|
self.last_update = 0
|
|
self.epoch_loss = 0.0
|
|
|
|
def update(self, epoch, loss, docs):
|
|
self.loss += loss
|
|
self.epoch_loss += loss
|
|
words_in_batch = sum(len(doc) for doc in docs)
|
|
self.words_per_epoch[epoch] += words_in_batch
|
|
self.nr_word += words_in_batch
|
|
words_since_update = self.nr_word - self.last_update
|
|
if words_since_update >= self.frequency:
|
|
wps = words_since_update / (time.time() - self.last_time)
|
|
self.last_update = self.nr_word
|
|
self.last_time = time.time()
|
|
loss_per_word = self.loss - self.prev_loss
|
|
status = (
|
|
epoch,
|
|
self.nr_word,
|
|
_smart_round(self.loss, width=10),
|
|
_smart_round(loss_per_word, width=6),
|
|
int(wps),
|
|
)
|
|
self.prev_loss = float(self.loss)
|
|
return status
|
|
else:
|
|
return None
|
|
|
|
|
|
def _smart_round(figure, width=10, max_decimal=4):
|
|
"""Round large numbers as integers, smaller numbers as decimals."""
|
|
n_digits = len(str(int(figure)))
|
|
n_decimal = width - (n_digits + 1)
|
|
if n_decimal <= 1:
|
|
return str(int(figure))
|
|
else:
|
|
n_decimal = min(n_decimal, max_decimal)
|
|
format_str = "%." + str(n_decimal) + "f"
|
|
return format_str % figure
|
|
|
|
|
|
def verify_cli_args(config_path, output_dir, resume_path, epoch_resume):
|
|
if not config_path or not config_path.exists():
|
|
msg.fail("Config file not found", config_path, exits=1)
|
|
if output_dir.exists() and [p for p in output_dir.iterdir()]:
|
|
if resume_path:
|
|
msg.warn(
|
|
"Output directory is not empty.",
|
|
"If you're resuming a run in this directory, the old weights "
|
|
"for the consecutive epochs will be overwritten with the new ones.",
|
|
)
|
|
else:
|
|
msg.warn(
|
|
"Output directory is not empty. ",
|
|
"It is better to use an empty directory or refer to a new output path, "
|
|
"then the new directory will be created for you.",
|
|
)
|
|
if resume_path is not None:
|
|
model_name = re.search(r"model\d+\.bin", str(resume_path))
|
|
if not model_name and not epoch_resume:
|
|
msg.fail(
|
|
"You have to use the --epoch-resume setting when using a renamed weight file for --resume-path",
|
|
exits=True,
|
|
)
|
|
elif not model_name and epoch_resume < 0:
|
|
msg.fail(
|
|
f"The argument --epoch-resume has to be greater or equal to 0. {epoch_resume} is invalid",
|
|
exits=True,
|
|
)
|