spaCy/examples/training/pretrain_textcat.py

218 lines
7.3 KiB
Python

"""This script is experimental.
Try pre-training the CNN component of the text categorizer using a cheap
language modelling-like objective. Specifically, we load pretrained vectors
(from something like word2vec, GloVe, FastText etc), and use the CNN to
predict the tokens' pretrained vectors. This isn't as easy as it sounds:
we're not merely doing compression here, because heavy dropout is applied,
including over the input words. This means the model must often (50% of the time)
use the context in order to predict the word.
To evaluate the technique, we're pre-training with the 50k texts from the IMDB
corpus, and then training with only 100 labels. Note that it's a bit dirty to
pre-train with the development data, but also not *so* terrible: we're not using
the development labels, after all --- only the unlabelled text.
"""
import plac
import tqdm
import random
import spacy
import thinc.extra.datasets
from spacy.util import minibatch, use_gpu, compounding
from spacy._ml import Tok2Vec
from spacy.pipeline import TextCategorizer
import numpy
def load_texts(limit=0):
train, dev = thinc.extra.datasets.imdb()
train_texts, train_labels = zip(*train)
dev_texts, dev_labels = zip(*train)
train_texts = list(train_texts)
dev_texts = list(dev_texts)
random.shuffle(train_texts)
random.shuffle(dev_texts)
if limit >= 1:
return train_texts[:limit]
else:
return list(train_texts) + list(dev_texts)
def load_textcat_data(limit=0):
"""Load data from the IMDB dataset."""
# Partition off part of the train data for evaluation
train_data, eval_data = thinc.extra.datasets.imdb()
random.shuffle(train_data)
train_data = train_data[-limit:]
texts, labels = zip(*train_data)
eval_texts, eval_labels = zip(*eval_data)
cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
eval_cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in eval_labels]
return (texts, cats), (eval_texts, eval_cats)
def prefer_gpu():
used = spacy.util.use_gpu(0)
if used is None:
return False
else:
import cupy.random
cupy.random.seed(0)
return True
def build_textcat_model(tok2vec, nr_class, width):
from thinc.v2v import Model, Softmax, Maxout
from thinc.api import flatten_add_lengths, chain
from thinc.t2v import Pooling, sum_pool, mean_pool, max_pool
from thinc.misc import Residual, LayerNorm
from spacy._ml import logistic, zero_init
with Model.define_operators({">>": chain}):
model = (
tok2vec
>> flatten_add_lengths
>> Pooling(mean_pool)
>> Softmax(nr_class, width)
)
model.tok2vec = tok2vec
return model
def block_gradients(model):
from thinc.api import wrap
def forward(X, drop=0.0):
Y, _ = model.begin_update(X, drop=drop)
return Y, None
return wrap(forward, model)
def create_pipeline(width, embed_size, vectors_model):
print("Load vectors")
nlp = spacy.load(vectors_model)
print("Start training")
textcat = TextCategorizer(
nlp.vocab,
labels=["POSITIVE", "NEGATIVE"],
model=build_textcat_model(
Tok2Vec(width=width, embed_size=embed_size), 2, width
),
)
nlp.add_pipe(textcat)
return nlp
def train_tensorizer(nlp, texts, dropout, n_iter):
tensorizer = nlp.create_pipe("tensorizer")
nlp.add_pipe(tensorizer)
optimizer = nlp.begin_training()
for i in range(n_iter):
losses = {}
for i, batch in enumerate(minibatch(tqdm.tqdm(texts))):
docs = [nlp.make_doc(text) for text in batch]
tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=dropout)
print(losses)
return optimizer
def train_textcat(nlp, n_texts, n_iter=10):
textcat = nlp.get_pipe("textcat")
tok2vec_weights = textcat.model.tok2vec.to_bytes()
(train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts)
print(
"Using {} examples ({} training, {} evaluation)".format(
n_texts, len(train_texts), len(dev_texts)
)
)
train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
# get names of other pipes to disable them during training
pipe_exceptions = ["textcat", "trf_wordpiecer", "trf_tok2vec"]
other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
with nlp.disable_pipes(*other_pipes): # only train textcat
optimizer = nlp.begin_training()
textcat.model.tok2vec.from_bytes(tok2vec_weights)
print("Training the model...")
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
for i in range(n_iter):
losses = {"textcat": 0.0}
# batch up the examples using spaCy's minibatch
batches = minibatch(tqdm.tqdm(train_data), size=2)
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses)
with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
scores = evaluate_textcat(nlp.tokenizer, textcat, dev_texts, dev_cats)
print(
"{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table
losses["textcat"],
scores["textcat_p"],
scores["textcat_r"],
scores["textcat_f"],
)
)
def evaluate_textcat(tokenizer, textcat, texts, cats):
docs = (tokenizer(text) for text in texts)
tp = 1e-8
fp = 1e-8
tn = 1e-8
fn = 1e-8
for i, doc in enumerate(textcat.pipe(docs)):
gold = cats[i]
for label, score in doc.cats.items():
if label not in gold:
continue
if score >= 0.5 and gold[label] >= 0.5:
tp += 1.0
elif score >= 0.5 and gold[label] < 0.5:
fp += 1.0
elif score < 0.5 and gold[label] < 0.5:
tn += 1
elif score < 0.5 and gold[label] >= 0.5:
fn += 1
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f_score = 2 * (precision * recall) / (precision + recall)
return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
@plac.annotations(
width=("Width of CNN layers", "positional", None, int),
embed_size=("Embedding rows", "positional", None, int),
pretrain_iters=("Number of iterations to pretrain", "option", "pn", int),
train_iters=("Number of iterations to pretrain", "option", "tn", int),
train_examples=("Number of labelled examples", "option", "eg", int),
vectors_model=("Name or path to vectors model to learn from"),
)
def main(
width,
embed_size,
vectors_model,
pretrain_iters=30,
train_iters=30,
train_examples=1000,
):
random.seed(0)
numpy.random.seed(0)
use_gpu = prefer_gpu()
print("Using GPU?", use_gpu)
nlp = create_pipeline(width, embed_size, vectors_model)
print("Load data")
texts = load_texts(limit=0)
print("Train tensorizer")
optimizer = train_tensorizer(nlp, texts, dropout=0.2, n_iter=pretrain_iters)
print("Train textcat")
train_textcat(nlp, train_examples, n_iter=train_iters)
if __name__ == "__main__":
plac.call(main)