spaCy/spacy/ml/tok2vec.py

171 lines
5.8 KiB
Python

from thinc.layers import chain, clone, concatenate, with_array, uniqued
from thinc.model import Model
from thinc.layers import noop, with_padded
from thinc.layers import Maxout, expand_window
from thinc.layers import HashEmbed, StaticVectors
from thinc.layers import residual, LayerNorm, FeatureExtractor
from spacy.ml import _character_embed
from ..util import make_layer, registry
@registry.architectures.register("spacy.Tok2Vec.v1")
def Tok2Vec(config):
doc2feats = make_layer(config["@doc2feats"])
embed = make_layer(config["@embed"])
encode = make_layer(config["@encode"])
field_size = 0
if encode.has_attr("receptive_field"):
field_size = encode.attrs["receptive_field"]
tok2vec = chain(doc2feats, with_array(chain(embed, encode), pad=field_size))
tok2vec.attrs["cfg"] = config
tok2vec.set_dim("nO", encode.get_dim("nO"))
tok2vec.set_ref("embed", embed)
tok2vec.set_ref("encode", encode)
return tok2vec
@registry.architectures.register("spacy.Doc2Feats.v1")
def Doc2Feats(config):
columns = config["columns"]
return FeatureExtractor(columns)
@registry.architectures.register("spacy.MultiHashEmbed.v1")
def MultiHashEmbed(config):
# For backwards compatibility with models before the architecture registry,
# we have to be careful to get exactly the same model structure. One subtle
# trick is that when we define concatenation with the operator, the operator
# is actually binary associative. So when we write (a | b | c), we're actually
# getting concatenate(concatenate(a, b), c). That's why the implementation
# is a bit ugly here.
cols = config["columns"]
width = config["width"]
rows = config["rows"]
norm = HashEmbed(width, rows, column=cols.index("NORM"), dropout=0.0)
if config["use_subwords"]:
prefix = HashEmbed(width, rows // 2, column=cols.index("PREFIX"), dropout=0.0)
suffix = HashEmbed(width, rows // 2, column=cols.index("SUFFIX"), dropout=0.0)
shape = HashEmbed(width, rows // 2, column=cols.index("SHAPE"), dropout=0.0)
if config.get("@pretrained_vectors"):
glove = make_layer(config["@pretrained_vectors"])
mix = make_layer(config["@mix"])
with Model.define_operators({">>": chain, "|": concatenate}):
if config["use_subwords"] and config["@pretrained_vectors"]:
mix._layers[0].set_dim("nI", width * 5)
layer = uniqued(
(glove | norm | prefix | suffix | shape) >> mix,
column=cols.index("ORTH"),
)
elif config["use_subwords"]:
mix._layers[0].set_dim("nI", width * 4)
layer = uniqued(
(norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
)
elif config["@pretrained_vectors"]:
mix._layers[0].set_dim("nI", width * 2)
layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"),)
else:
layer = norm
layer.attrs["cfg"] = config
return layer
@registry.architectures.register("spacy.CharacterEmbed.v1")
def CharacterEmbed(config):
width = config["width"]
chars = config["chars"]
chr_embed = _character_embed.CharacterEmbed(nM=width, nC=chars)
other_tables = make_layer(config["@embed_features"])
mix = make_layer(config["@mix"])
model = chain(concatenate(chr_embed, other_tables), mix)
model.attrs["cfg"] = config
return model
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
def MaxoutWindowEncoder(config):
nO = config["width"]
nW = config["window_size"]
nP = config["pieces"]
depth = config["depth"]
cnn = expand_window(window_size=nW), Maxout(nO=nO, nI=nO * ((nW * 2) + 1), nP=nP, dropout=0.0, normalize=True)
model = clone(residual(cnn), depth)
model.set_dim("nO", nO)
model.attrs["receptive_field"] = nW * depth
return model
@registry.architectures.register("spacy.MishWindowEncoder.v1")
def MishWindowEncoder(config):
from thinc.layers import Mish
nO = config["width"]
nW = config["window_size"]
depth = config["depth"]
cnn = chain(expand_window(window_size=nW), Mish(nO=nO, nI=nO * ((nW * 2) + 1)), LayerNorm(nO))
model = clone(residual(cnn), depth)
model.set_dim("nO", nO)
return model
@registry.architectures.register("spacy.PretrainedVectors.v1")
def PretrainedVectors(config):
# TODO: actual vectors instead of name
return StaticVectors(vectors=config["vectors_name"], nO=config["width"], column=config["column"], dropout=0.0)
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
def TorchBiLSTMEncoder(config):
import torch.nn
# TODO FIX
from thinc.layers import PyTorchRNNWrapper
width = config["width"]
depth = config["depth"]
if depth == 0:
return noop()
return with_padded(
PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
)
# TODO: update
_EXAMPLE_CONFIG = {
"@doc2feats": {
"arch": "Doc2Feats",
"config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
},
"@embed": {
"arch": "spacy.MultiHashEmbed.v1",
"config": {
"width": 96,
"rows": 2000,
"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
"use_subwords": True,
"@pretrained_vectors": {
"arch": "TransformedStaticVectors",
"config": {
"vectors_name": "en_vectors_web_lg.vectors",
"width": 96,
"column": 0,
},
},
"@mix": {
"arch": "LayerNormalizedMaxout",
"config": {"width": 96, "pieces": 3},
},
},
},
"@encode": {
"arch": "MaxoutWindowEncode",
"config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
},
}