spaCy/spacy/_ml.py

278 lines
8.5 KiB
Python

from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
from thinc.neural import Model, Maxout, Softmax, Affine
from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural._classes.convolution import ExtractWindow
from thinc.neural._classes.static_vectors import StaticVectors
from thinc.neural._classes.batchnorm import BatchNorm
from thinc.neural._classes.resnet import Residual
from thinc.neural import ReLu
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
from .tokens.doc import Doc
import numpy
def _init_for_precomputed(W, ops):
reshaped = W.reshape((W.shape[1], W.shape[0] * W.shape[2]))
ops.xavier_uniform_init(reshaped)
W[:] = reshaped.reshape(W.shape)
@describe.on_data(_set_dimensions_if_needed)
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nO=Dimension("Output size"),
W=Synapses("Weights matrix",
lambda obj: (obj.nF, obj.nO, obj.nI),
lambda W, ops: _init_for_precomputed(W, ops)),
b=Biases("Bias vector",
lambda obj: (obj.nO,)),
d_W=Gradient("W"),
d_b=Gradient("b")
)
class PrecomputableAffine(Model):
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.):
# X: (b, i)
# Yf: (b, f, i)
# dY: (b, o)
# dYf: (b, f, o)
#Yf = numpy.einsum('bi,foi->bfo', X, self.W)
Yf = self.ops.xp.tensordot(
X, self.W, axes=[[1], [2]])
Yf += self.b
def backward(dY_ids, sgd=None):
tensordot = self.ops.xp.tensordot
dY, ids = dY_ids
Xf = X[ids]
#dXf = numpy.einsum('bo,foi->bfi', dY, self.W)
dXf = tensordot(dY, self.W, axes=[[1], [1]])
#dW = numpy.einsum('bo,bfi->ofi', dY, Xf)
dW = tensordot(dY, Xf, axes=[[0], [0]])
# ofi -> foi
self.d_W += dW.transpose((1, 0, 2))
self.d_b += dY.sum(axis=0)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return dXf
return Yf, backward
@describe.on_data(_set_dimensions_if_needed)
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nP=Dimension("Number of pieces"),
nO=Dimension("Output size"),
W=Synapses("Weights matrix",
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
lambda W, ops: ops.xavier_uniform_init(W)),
b=Biases("Bias vector",
lambda obj: (obj.nO, obj.nP)),
d_W=Gradient("W"),
d_b=Gradient("b")
)
class PrecomputableMaxouts(Model):
def __init__(self, nO=None, nI=None, nF=None, nP=3, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nP = nP
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.):
# X: (b, i)
# Yfp: (b, f, o, p)
# Xf: (f, b, i)
# dYp: (b, o, p)
# W: (f, o, p, i)
# b: (o, p)
# bi,opfi->bfop
# bop,fopi->bfi
# bop,fbi->opfi : fopi
tensordot = self.ops.xp.tensordot
ascontiguous = self.ops.xp.ascontiguousarray
Yfp = tensordot(X, self.W, axes=[[1], [3]])
Yfp += self.b
def backward(dYp_ids, sgd=None):
dYp, ids = dYp_ids
Xf = X[ids]
dXf = tensordot(dYp, self.W, axes=[[1, 2], [1,2]])
dW = tensordot(dYp, Xf, axes=[[0], [0]])
self.d_W += dW.transpose((2, 0, 1, 3))
self.d_b += dYp.sum(axis=0)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return dXf
return Yfp, backward
def Tok2Vec(width, embed_size, preprocess=None):
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE]
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size)
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2)
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2)
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2)
tok2vec = (
with_flatten(
asarray(Model.ops, dtype='uint64')
>> (lower | prefix | suffix | shape )
>> Maxout(width, width*4, pieces=3)
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
pad=4, ndim=5)
)
if preprocess not in (False, None):
tok2vec = preprocess >> tok2vec
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
return tok2vec
def asarray(ops, dtype):
def forward(X, drop=0.):
return ops.asarray(X, dtype=dtype), None
return layerize(forward)
def foreach(layer):
def forward(Xs, drop=0.):
results = []
backprops = []
for X in Xs:
result, bp = layer.begin_update(X, drop=drop)
results.append(result)
backprops.append(bp)
def backward(d_results, sgd=None):
dXs = []
for d_result, backprop in zip(d_results, backprops):
dXs.append(backprop(d_result, sgd))
return dXs
return results, backward
model = layerize(forward)
model._layers.append(layer)
return model
def rebatch(size, layer):
ops = layer.ops
def forward(X, drop=0.):
if X.shape[0] < size:
return layer.begin_update(X)
parts = _divide_array(X, size)
results, bp_results = zip(*[layer.begin_update(p, drop=drop)
for p in parts])
y = ops.flatten(results)
def backward(dy, sgd=None):
d_parts = [bp(y, sgd=sgd) for bp, y in
zip(bp_results, _divide_array(dy, size))]
try:
dX = ops.flatten(d_parts)
except TypeError:
dX = None
except ValueError:
dX = None
return dX
return y, backward
model = layerize(forward)
model._layers.append(layer)
return model
def _divide_array(X, size):
parts = []
index = 0
while index < len(X):
parts.append(X[index : index + size])
index += size
return parts
def get_col(idx):
assert idx >= 0, idx
def forward(X, drop=0.):
assert idx >= 0, idx
if isinstance(X, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
def backward(y, sgd=None):
assert idx >= 0, idx
dX = ops.allocate(X.shape)
dX[:, idx] += y
return dX
return output, backward
return layerize(forward)
def zero_init(model):
def _hook(self, X, y=None):
self.W.fill(0)
model.on_data_hooks.append(_hook)
return model
def doc2feats(cols=None):
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE]
def forward(docs, drop=0.):
feats = []
for doc in docs:
feats.append(doc.to_array(cols))
return feats, None
model = layerize(forward)
model.cols = cols
return model
def print_shape(prefix):
def forward(X, drop=0.):
return X, lambda dX, **kwargs: dX
return layerize(forward)
@layerize
def get_token_vectors(tokens_attrs_vectors, drop=0.):
ops = Model.ops
tokens, attrs, vectors = tokens_attrs_vectors
def backward(d_output, sgd=None):
return (tokens, d_output)
return vectors, backward
@layerize
def flatten(seqs, drop=0.):
if isinstance(seqs[0], numpy.ndarray):
ops = NumpyOps()
elif hasattr(CupyOps.xp, 'ndarray') and isinstance(seqs[0], CupyOps.xp.ndarray):
ops = CupyOps()
else:
raise ValueError("Unable to flatten sequence of type %s" % type(seqs[0]))
lengths = [len(seq) for seq in seqs]
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths)
X = ops.xp.vstack(seqs)
return X, finish_update