spaCy/spacy/tests/parser/test_add_label.py

126 lines
3.8 KiB
Python

import pytest
from thinc.api import Adam, fix_random_seed
from spacy import registry
from spacy.attrs import NORM
from spacy.vocab import Vocab
from spacy.training import Example
from spacy.tokens import Doc
from spacy.pipeline import DependencyParser, EntityRecognizer
from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
@pytest.fixture
def vocab():
return Vocab(lex_attr_getters={NORM: lambda s: s})
@pytest.fixture
def parser(vocab):
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
parser = DependencyParser(vocab, model, **config)
return parser
def test_init_parser(parser):
pass
def _train_parser(parser):
fix_random_seed(1)
parser.add_label("left")
parser.begin_training(lambda: [_parser_example(parser)], **parser.cfg)
sgd = Adam(0.001)
for i in range(5):
losses = {}
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
gold = {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]}
example = Example.from_dict(doc, gold)
parser.update([example], sgd=sgd, losses=losses)
return parser
def _parser_example(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]}
return Example.from_dict(doc, gold)
def _ner_example(ner):
doc = Doc(
ner.vocab,
words=["Joe", "loves", "visiting", "London", "during", "the", "weekend"],
)
gold = {"entities": [(0, 3, "PERSON"), (19, 25, "LOC")]}
return Example.from_dict(doc, gold)
def test_add_label(parser):
parser = _train_parser(parser)
parser.add_label("right")
sgd = Adam(0.001)
for i in range(100):
losses = {}
parser.update([_parser_example(parser)], sgd=sgd, losses=losses)
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc = parser(doc)
assert doc[0].dep_ == "right"
assert doc[2].dep_ == "left"
def test_add_label_deserializes_correctly():
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_NER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
ner1 = EntityRecognizer(Vocab(), model, **config)
ner1.add_label("C")
ner1.add_label("B")
ner1.add_label("A")
ner1.begin_training(lambda: [_ner_example(ner1)])
ner2 = EntityRecognizer(Vocab(), model, **config)
# the second model needs to be resized before we can call from_bytes
ner2.model.attrs["resize_output"](ner2.model, ner1.moves.n_moves)
ner2.from_bytes(ner1.to_bytes())
assert ner1.moves.n_moves == ner2.moves.n_moves
for i in range(ner1.moves.n_moves):
assert ner1.moves.get_class_name(i) == ner2.moves.get_class_name(i)
@pytest.mark.parametrize(
"pipe_cls,n_moves,model_config",
[
(DependencyParser, 5, DEFAULT_PARSER_MODEL),
(EntityRecognizer, 4, DEFAULT_NER_MODEL),
],
)
def test_add_label_get_label(pipe_cls, n_moves, model_config):
"""Test that added labels are returned correctly. This test was added to
test for a bug in DependencyParser.labels that'd cause it to fail when
splitting the move names.
"""
labels = ["A", "B", "C"]
model = registry.resolve({"model": model_config}, validate=True)["model"]
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
}
pipe = pipe_cls(Vocab(), model, **config)
for label in labels:
pipe.add_label(label)
assert len(pipe.move_names) == len(labels) * n_moves
pipe_labels = sorted(list(pipe.labels))
assert pipe_labels == labels