mirror of https://github.com/explosion/spaCy.git
37 lines
1.1 KiB
Python
37 lines
1.1 KiB
Python
import pytest
|
|
from spacy.lang.en import English
|
|
import numpy as np
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,label", [
|
|
('Welcome to Mumbai, my friend',11,17,'GPE')
|
|
]
|
|
)
|
|
def test_char_span_label(sentence, start_idx, end_idx, label):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, label=label)
|
|
assert span.label_ == label
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,kb_id", [
|
|
('Welcome to Mumbai, my friend',11,17,5)
|
|
]
|
|
)
|
|
def test_char_span_kb_id(sentence, start_idx, end_idx, kb_id):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
|
|
assert span.kb_id == kb_id
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,vector", [
|
|
('Welcome to Mumbai, my friend',11,17,np.array([0.1,0.2,0.3]))
|
|
]
|
|
)
|
|
def test_char_span_vector(sentence, start_idx, end_idx, vector):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, vector=vector)
|
|
assert (span.vector == vector).all() |