spaCy/spacy/tests/pipeline/test_entity_linker.py

547 lines
20 KiB
Python

from typing import Callable, Iterable
import pytest
from spacy.kb import KnowledgeBase, get_candidates, Candidate
from spacy.vocab import Vocab
from spacy import util, registry
from spacy.scorer import Scorer
from spacy.training import Example
from spacy.lang.en import English
from spacy.tests.util import make_tempdir
from spacy.tokens import Span
@pytest.fixture
def nlp():
return English()
def assert_almost_equal(a, b):
delta = 0.0001
assert a - delta <= b <= a + delta
def test_kb_valid_entities(nlp):
"""Test the valid construction of a KB with 3 entities and two aliases"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
# adding aliases
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the corresponding KB
assert mykb.get_size_entities() == 3
assert mykb.get_size_aliases() == 2
# test retrieval of the entity vectors
assert mykb.get_vector("Q1") == [8, 4, 3]
assert mykb.get_vector("Q2") == [2, 1, 0]
assert mykb.get_vector("Q3") == [-1, -6, 5]
# test retrieval of prior probabilities
assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
def test_kb_invalid_entities(nlp):
"""Test the invalid construction of a KB with an alias linked to a non-existing entity"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because one of the given IDs is not valid
with pytest.raises(ValueError):
mykb.add_alias(
alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
)
def test_kb_invalid_probabilities(nlp):
"""Test the invalid construction of a KB with wrong prior probabilities"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because the sum of the probabilities exceeds 1
with pytest.raises(ValueError):
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
def test_kb_invalid_combination(nlp):
"""Test the invalid construction of a KB with non-matching entity and probability lists"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because the entities and probabilities vectors are not of equal length
with pytest.raises(ValueError):
mykb.add_alias(
alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
)
def test_kb_invalid_entity_vector(nlp):
"""Test the invalid construction of a KB with non-matching entity vector lengths"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
# this should fail because the kb's expected entity vector length is 3
with pytest.raises(ValueError):
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
def test_kb_default(nlp):
"""Test that the default (empty) KB is loaded when not providing a config"""
entity_linker = nlp.add_pipe("entity_linker", config={})
assert len(entity_linker.kb) == 0
assert entity_linker.kb.get_size_entities() == 0
assert entity_linker.kb.get_size_aliases() == 0
# 64 is the default value from pipeline.entity_linker
assert entity_linker.kb.entity_vector_length == 64
def test_kb_custom_length(nlp):
"""Test that the default (empty) KB can be configured with a custom entity length"""
entity_linker = nlp.add_pipe(
"entity_linker", config={"kb_loader": {"entity_vector_length": 35}}
)
assert len(entity_linker.kb) == 0
assert entity_linker.kb.get_size_entities() == 0
assert entity_linker.kb.get_size_aliases() == 0
assert entity_linker.kb.entity_vector_length == 35
def test_kb_undefined(nlp):
"""Test that the EL can't train without defining a KB"""
entity_linker = nlp.add_pipe("entity_linker", config={})
with pytest.raises(ValueError):
entity_linker.initialize(lambda: [])
def test_kb_empty(nlp):
"""Test that the EL can't train with an empty KB"""
config = {"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 342}}
entity_linker = nlp.add_pipe("entity_linker", config=config)
assert len(entity_linker.kb) == 0
with pytest.raises(ValueError):
entity_linker.initialize(lambda: [])
def test_kb_serialize(nlp):
"""Test serialization of the KB"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
with make_tempdir() as d:
# normal read-write behaviour
mykb.to_disk(d / "kb")
mykb.from_disk(d / "kb")
mykb.to_disk(d / "new" / "kb")
mykb.from_disk(d / "new" / "kb")
# allow overwriting an existing file
mykb.to_disk(d / "kb")
with pytest.raises(ValueError):
# can not read from an unknown file
mykb.from_disk(d / "unknown" / "kb")
def test_candidate_generation(nlp):
"""Test correct candidate generation"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
doc = nlp("douglas adam Adam shrubbery")
douglas_ent = doc[0:1]
adam_ent = doc[1:2]
Adam_ent = doc[2:3]
shrubbery_ent = doc[3:4]
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the relevant candidates
assert len(get_candidates(mykb, douglas_ent)) == 2
assert len(get_candidates(mykb, adam_ent)) == 1
assert len(get_candidates(mykb, Adam_ent)) == 0 # default case sensitive
assert len(get_candidates(mykb, shrubbery_ent)) == 0
# test the content of the candidates
assert get_candidates(mykb, adam_ent)[0].entity_ == "Q2"
assert get_candidates(mykb, adam_ent)[0].alias_ == "adam"
assert_almost_equal(get_candidates(mykb, adam_ent)[0].entity_freq, 12)
assert_almost_equal(get_candidates(mykb, adam_ent)[0].prior_prob, 0.9)
def test_el_pipe_configuration(nlp):
"""Test correct candidate generation as part of the EL pipe"""
nlp.add_pipe("sentencizer")
pattern = {"label": "PERSON", "pattern": [{"LOWER": "douglas"}]}
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns([pattern])
@registry.misc.register("myAdamKB.v1")
def mykb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
kb.add_entity(entity="Q2", freq=12, entity_vector=[2])
kb.add_entity(entity="Q3", freq=5, entity_vector=[3])
kb.add_alias(
alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1]
)
return kb
return create_kb
# run an EL pipe without a trained context encoder, to check the candidate generation step only
nlp.add_pipe(
"entity_linker",
config={"kb_loader": {"@misc": "myAdamKB.v1"}, "incl_context": False},
)
# With the default get_candidates function, matching is case-sensitive
text = "Douglas and douglas are not the same."
doc = nlp(text)
assert doc[0].ent_kb_id_ == "NIL"
assert doc[1].ent_kb_id_ == ""
assert doc[2].ent_kb_id_ == "Q2"
def get_lowercased_candidates(kb, span):
return kb.get_alias_candidates(span.text.lower())
@registry.misc.register("spacy.LowercaseCandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
return get_lowercased_candidates
# replace the pipe with a new one with with a different candidate generator
nlp.replace_pipe(
"entity_linker",
"entity_linker",
config={
"kb_loader": {"@misc": "myAdamKB.v1"},
"incl_context": False,
"get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
},
)
doc = nlp(text)
assert doc[0].ent_kb_id_ == "Q2"
assert doc[1].ent_kb_id_ == ""
assert doc[2].ent_kb_id_ == "Q2"
def test_vocab_serialization(nlp):
"""Test that string information is retained across storage"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
q1_hash = mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
q2_hash = mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
q3_hash = mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
douglas_hash = mykb.add_alias(
alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1]
)
adam_hash = mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
candidates = mykb.get_alias_candidates("adam")
assert len(candidates) == 1
assert candidates[0].entity == q2_hash
assert candidates[0].entity_ == "Q2"
assert candidates[0].alias == adam_hash
assert candidates[0].alias_ == "adam"
with make_tempdir() as d:
mykb.to_disk(d / "kb")
kb_new_vocab = KnowledgeBase(Vocab(), entity_vector_length=1)
kb_new_vocab.from_disk(d / "kb")
candidates = kb_new_vocab.get_alias_candidates("adam")
assert len(candidates) == 1
assert candidates[0].entity == q2_hash
assert candidates[0].entity_ == "Q2"
assert candidates[0].alias == adam_hash
assert candidates[0].alias_ == "adam"
def test_append_alias(nlp):
"""Test that we can append additional alias-entity pairs"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the relevant candidates
assert len(mykb.get_alias_candidates("douglas")) == 2
# append an alias
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
# test the size of the relevant candidates has been incremented
assert len(mykb.get_alias_candidates("douglas")) == 3
# append the same alias-entity pair again should not work (will throw a warning)
with pytest.warns(UserWarning):
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
# test the size of the relevant candidates remained unchanged
assert len(mykb.get_alias_candidates("douglas")) == 3
def test_append_invalid_alias(nlp):
"""Test that append an alias will throw an error if prior probs are exceeding 1"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# append an alias - should fail because the entities and probabilities vectors are not of equal length
with pytest.raises(ValueError):
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
def test_preserving_links_asdoc(nlp):
"""Test that Span.as_doc preserves the existing entity links"""
vector_length = 1
@registry.misc.register("myLocationsKB.v1")
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
# adding aliases
mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
return mykb
return create_kb
# set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
nlp.add_pipe("sentencizer")
patterns = [
{"label": "GPE", "pattern": "Boston"},
{"label": "GPE", "pattern": "Denver"},
]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
el_config = {"kb_loader": {"@misc": "myLocationsKB.v1"}, "incl_prior": False}
entity_linker = nlp.add_pipe("entity_linker", config=el_config, last=True)
nlp.initialize()
assert entity_linker.model.get_dim("nO") == vector_length
# test whether the entity links are preserved by the `as_doc()` function
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
for ent in doc.ents:
orig_text = ent.text
orig_kb_id = ent.kb_id_
sent_doc = ent.sent.as_doc()
for s_ent in sent_doc.ents:
if s_ent.text == orig_text:
assert s_ent.kb_id_ == orig_kb_id
def test_preserving_links_ents(nlp):
"""Test that doc.ents preserves KB annotations"""
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
assert len(list(doc.ents)) == 0
boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
doc.ents = [boston_ent]
assert len(list(doc.ents)) == 1
assert list(doc.ents)[0].label_ == "LOC"
assert list(doc.ents)[0].kb_id_ == "Q1"
def test_preserving_links_ents_2(nlp):
"""Test that doc.ents preserves KB annotations"""
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
assert len(list(doc.ents)) == 0
loc = doc.vocab.strings.add("LOC")
q1 = doc.vocab.strings.add("Q1")
doc.ents = [(loc, q1, 3, 4)]
assert len(list(doc.ents)) == 1
assert list(doc.ents)[0].label_ == "LOC"
assert list(doc.ents)[0].kb_id_ == "Q1"
# fmt: off
TRAIN_DATA = [
("Russ Cochran captured his first major title with his son as caddie.",
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
"entities": [(0, 12, "PERSON")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}),
("Russ Cochran his reprints include EC Comics.",
{"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
"entities": [(0, 12, "PERSON")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
("Russ Cochran has been publishing comic art.",
{"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
"entities": [(0, 12, "PERSON")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
("Russ Cochran was a member of University of Kentucky's golf team.",
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
"entities": [(0, 12, "PERSON"), (43, 51, "LOC")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]})
]
GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
# fmt: on
def test_overfitting_IO():
# Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
nlp = English()
vector_length = 3
# Convert the texts to docs to make sure we have doc.ents set for the training examples
train_examples = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
train_examples.append(Example.from_dict(doc, annotation))
@registry.misc.register("myOverfittingKB.v1")
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab):
# create artificial KB - assign same prior weight to the two russ cochran's
# Q2146908 (Russ Cochran): American golfer
# Q7381115 (Russ Cochran): publisher
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias(
alias="Russ Cochran",
entities=["Q2146908", "Q7381115"],
probabilities=[0.5, 0.5],
)
return mykb
return create_kb
# Create the Entity Linker component and add it to the pipeline
entity_linker = nlp.add_pipe(
"entity_linker",
config={"kb_loader": {"@misc": "myOverfittingKB.v1"}},
last=True,
)
# train the NEL pipe
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert entity_linker.model.get_dim("nO") == vector_length
assert entity_linker.model.get_dim("nO") == entity_linker.kb.entity_vector_length
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["entity_linker"] < 0.001
# adding additional components that are required for the entity_linker
nlp.add_pipe("sentencizer", first=True)
# Add a custom component to recognize "Russ Cochran" as an entity for the example training data
patterns = [
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
]
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
ruler.add_patterns(patterns)
# test the trained model
predictions = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
for ent in doc.ents:
predictions.append(ent.kb_id_)
assert predictions == GOLD_entities
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
assert nlp2.pipe_names == nlp.pipe_names
predictions = []
for text, annotation in TRAIN_DATA:
doc2 = nlp2(text)
for ent in doc2.ents:
predictions.append(ent.kb_id_)
assert predictions == GOLD_entities
def test_scorer_links():
train_examples = []
nlp = English()
ref1 = nlp("Julia lives in London happily.")
ref1.ents = [
Span(ref1, 0, 1, label="PERSON", kb_id="Q2"),
Span(ref1, 3, 4, label="LOC", kb_id="Q3"),
]
pred1 = nlp("Julia lives in London happily.")
pred1.ents = [
Span(pred1, 0, 1, label="PERSON", kb_id="Q70"),
Span(pred1, 3, 4, label="LOC", kb_id="Q3"),
]
train_examples.append(Example(pred1, ref1))
ref2 = nlp("She loves London.")
ref2.ents = [
Span(ref2, 0, 1, label="PERSON", kb_id="Q2"),
Span(ref2, 2, 3, label="LOC", kb_id="Q13"),
]
pred2 = nlp("She loves London.")
pred2.ents = [
Span(pred2, 0, 1, label="PERSON", kb_id="Q2"),
Span(pred2, 2, 3, label="LOC", kb_id="NIL"),
]
train_examples.append(Example(pred2, ref2))
ref3 = nlp("London is great.")
ref3.ents = [Span(ref3, 0, 1, label="LOC", kb_id="NIL")]
pred3 = nlp("London is great.")
pred3.ents = [Span(pred3, 0, 1, label="LOC", kb_id="NIL")]
train_examples.append(Example(pred3, ref3))
scores = Scorer().score_links(train_examples, negative_labels=["NIL"])
assert scores["nel_f_per_type"]["PERSON"]["p"] == 1 / 2
assert scores["nel_f_per_type"]["PERSON"]["r"] == 1 / 2
assert scores["nel_f_per_type"]["LOC"]["p"] == 1 / 1
assert scores["nel_f_per_type"]["LOC"]["r"] == 1 / 2
assert scores["nel_micro_p"] == 2 / 3
assert scores["nel_micro_r"] == 2 / 4