mirror of https://github.com/explosion/spaCy.git
114 lines
3.4 KiB
Cython
114 lines
3.4 KiB
Cython
# cython: profile=True
|
|
"""
|
|
MALT-style dependency parser
|
|
"""
|
|
from __future__ import unicode_literals
|
|
cimport cython
|
|
import random
|
|
import os.path
|
|
from os.path import join as pjoin
|
|
import shutil
|
|
import json
|
|
|
|
from cymem.cymem cimport Pool, Address
|
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t
|
|
|
|
|
|
from util import Config
|
|
|
|
from thinc.features cimport Extractor
|
|
from thinc.features cimport Feature
|
|
from thinc.features cimport count_feats
|
|
|
|
from thinc.learner cimport LinearModel
|
|
|
|
from ..tokens cimport Tokens, TokenC
|
|
|
|
from .arc_eager cimport TransitionSystem
|
|
|
|
from ._state cimport init_state, State, is_final, get_idx, get_s0, get_s1
|
|
|
|
from . import _parse_features
|
|
from ._parse_features cimport fill_context, CONTEXT_SIZE
|
|
|
|
|
|
DEF CONTEXT_SIZE = 50
|
|
|
|
|
|
DEBUG = False
|
|
def set_debug(val):
|
|
global DEBUG
|
|
DEBUG = val
|
|
|
|
|
|
cdef unicode print_state(State* s, list words):
|
|
words = list(words) + ['EOL']
|
|
top = words[get_idx(s, get_s0(s))]
|
|
second = words[get_idx(s, get_s1(s))]
|
|
n0 = words[s.i]
|
|
n1 = words[s.i + 1]
|
|
return ' '.join((second, top, '|', n0, n1))
|
|
|
|
|
|
def get_templates(name):
|
|
return _parse_features.arc_eager
|
|
|
|
|
|
cdef class GreedyParser:
|
|
def __init__(self, model_dir):
|
|
assert os.path.exists(model_dir) and os.path.isdir(model_dir)
|
|
self.cfg = Config.read(model_dir, 'config')
|
|
self.extractor = Extractor(get_templates(self.cfg.features))
|
|
self.moves = TransitionSystem(self.cfg.left_labels, self.cfg.right_labels)
|
|
|
|
self.model = LinearModel(self.moves.n_moves, self.extractor.n_templ)
|
|
if os.path.exists(pjoin(model_dir, 'model')):
|
|
self.model.load(pjoin(model_dir, 'model'))
|
|
|
|
cpdef int parse(self, Tokens tokens) except -1:
|
|
cdef:
|
|
Feature* feats
|
|
const weight_t* scores
|
|
|
|
cdef atom_t[CONTEXT_SIZE] context
|
|
cdef int n_feats
|
|
cdef Pool mem = Pool()
|
|
cdef State* state = init_state(mem, tokens.data, tokens.length)
|
|
while not is_final(state):
|
|
fill_context(context, state) # TODO
|
|
feats = self.extractor.get_feats(context, &n_feats)
|
|
scores = self.model.get_scores(feats, n_feats)
|
|
|
|
guess = self.moves.best_valid(scores, state)
|
|
|
|
self.moves.transition(state, guess)
|
|
# TODO output
|
|
|
|
def train_sent(self, Tokens tokens, list gold_heads, list gold_labels):
|
|
cdef:
|
|
Feature* feats
|
|
weight_t* scores
|
|
|
|
cdef int n_feats
|
|
cdef atom_t[CONTEXT_SIZE] context
|
|
cdef Pool mem = Pool()
|
|
cdef State* state = init_state(mem, tokens.data, tokens.length)
|
|
words = [t.string for t in tokens]
|
|
while not is_final(state):
|
|
fill_context(context, state)
|
|
feats = self.extractor.get_feats(context, &n_feats)
|
|
scores = self.model.get_scores(feats, n_feats)
|
|
guess = self.moves.best_valid(scores, state)
|
|
best = self.moves.best_gold(scores, state, gold_heads, gold_labels)
|
|
counts = {guess: {}, best: {}}
|
|
if guess != best:
|
|
count_feats(counts[guess], feats, n_feats, -1)
|
|
count_feats(counts[best], feats, n_feats, 1)
|
|
self.model.update(counts)
|
|
self.moves.transition(state, guess)
|
|
cdef int i
|
|
n_corr = 0
|
|
for i in range(tokens.length):
|
|
n_corr += state.sent[i].head == gold_heads[i]
|
|
return n_corr
|