spaCy/spacy/lang/en/__init__.py

82 lines
2.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding: utf8
from __future__ import unicode_literals
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .tag_map import TAG_MAP
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .morph_rules import MORPH_RULES
from .syntax_iterators import SYNTAX_ITERATORS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc
def _return_en(_):
return "en"
def en_is_base_form(univ_pos, morphology=None):
"""
Check whether we're dealing with an uninflected paradigm, so we can
avoid lemmatization entirely.
univ_pos (unicode / int): The token's universal part-of-speech tag.
morphology (dict): The token's morphological features following the
Universal Dependencies scheme.
"""
if morphology is None:
morphology = {}
if univ_pos == "noun" and morphology.get("Number") == "sing":
return True
elif univ_pos == "verb" and morphology.get("VerbForm") == "inf":
return True
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
# morphology
elif univ_pos == "verb" and (
morphology.get("VerbForm") == "fin"
and morphology.get("Tense") == "pres"
and morphology.get("Number") is None
):
return True
elif univ_pos == "adj" and morphology.get("Degree") == "pos":
return True
elif morphology.get("VerbForm") == "inf":
return True
elif morphology.get("VerbForm") == "none":
return True
elif morphology.get("Degree") == "pos":
return True
else:
return False
class EnglishDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters.update(LEX_ATTRS)
lex_attr_getters[LANG] = _return_en
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
tag_map = TAG_MAP
stop_words = STOP_WORDS
morph_rules = MORPH_RULES
is_base_form = en_is_base_form
syntax_iterators = SYNTAX_ITERATORS
single_orth_variants = [
{"tags": ["NFP"], "variants": ["", "..."]},
{"tags": [":"], "variants": ["-", "", "", "--", "---", "——"]},
]
paired_orth_variants = [
{"tags": ["``", "''"], "variants": [("'", "'"), ("", "")]},
{"tags": ["``", "''"], "variants": [('"', '"'), ("", "")]},
]
class English(Language):
lang = "en"
Defaults = EnglishDefaults
__all__ = ["English"]