mirror of https://github.com/explosion/spaCy.git
99 lines
3.3 KiB
Python
99 lines
3.3 KiB
Python
# coding: utf8
|
||
from __future__ import unicode_literals
|
||
|
||
from ..norm_exceptions import BASE_NORMS
|
||
from ...attrs import NORM, LIKE_NUM
|
||
|
||
|
||
# fmt: off
|
||
_stem_suffixes = [
|
||
["ा", "ि", "ी", "ु", "ू", "ृ", "े", "ै", "ो", "ौ"],
|
||
["ँ", "ं", "्", "ः"],
|
||
["लाई", "ले", "बाट", "को", "मा", "हरू"],
|
||
["हरूलाई", "हरूले", "हरूबाट", "हरूको", "हरूमा"],
|
||
["इलो", "िलो", "नु", "ाउनु", "ई", "इन", "इन्", "इनन्"],
|
||
["एँ", "इँन्", "इस्", "इनस्", "यो", "एन", "यौं", "एनौं", "ए", "एनन्"],
|
||
["छु", "छौँ", "छस्", "छौ", "छ", "छन्", "छेस्", "छे", "छ्यौ", "छिन्", "हुन्छ"],
|
||
["दै", "दिन", "दिँन", "दैनस्", "दैन", "दैनौँ", "दैनौं", "दैनन्"],
|
||
["हुन्न", "न्न", "न्न्स्", "न्नौं", "न्नौ", "न्न्न्", "िई"],
|
||
["अ", "ओ", "ऊ", "अरी", "साथ", "वित्तिकै", "पूर्वक"],
|
||
["याइ", "ाइ", "बार", "वार", "चाँहि"],
|
||
["ने", "ेको", "ेकी", "ेका", "ेर", "दै", "तै", "िकन", "उ", "न", "नन्"]
|
||
]
|
||
# fmt: on
|
||
|
||
# reference 1: https://en.wikipedia.org/wiki/Numbers_in_Nepali_language
|
||
# reference 2: https://www.imnepal.com/nepali-numbers/
|
||
_num_words = [
|
||
"शुन्य",
|
||
"एक",
|
||
"दुई",
|
||
"तीन",
|
||
"चार",
|
||
"पाँच",
|
||
"छ",
|
||
"सात",
|
||
"आठ",
|
||
"नौ",
|
||
"दश",
|
||
"एघार",
|
||
"बाह्र",
|
||
"तेह्र",
|
||
"चौध",
|
||
"पन्ध्र",
|
||
"सोह्र",
|
||
"सोह्र",
|
||
"सत्र",
|
||
"अठार",
|
||
"उन्नाइस",
|
||
"बीस",
|
||
"तीस",
|
||
"चालीस",
|
||
"पचास",
|
||
"साठी",
|
||
"सत्तरी",
|
||
"असी",
|
||
"नब्बे",
|
||
"सय",
|
||
"हजार",
|
||
"लाख",
|
||
"करोड",
|
||
"अर्ब",
|
||
"खर्ब",
|
||
]
|
||
|
||
|
||
def norm(string):
|
||
# normalise base exceptions, e.g. punctuation or currency symbols
|
||
if string in BASE_NORMS:
|
||
return BASE_NORMS[string]
|
||
# set stem word as norm, if available, adapted from:
|
||
# https://github.com/explosion/spaCy/blob/master/spacy/lang/hi/lex_attrs.py
|
||
# https://www.researchgate.net/publication/237261579_Structure_of_Nepali_Grammar
|
||
for suffix_group in reversed(_stem_suffixes):
|
||
length = len(suffix_group[0])
|
||
if len(string) <= length:
|
||
break
|
||
for suffix in suffix_group:
|
||
if string.endswith(suffix):
|
||
return string[:-length]
|
||
return string
|
||
|
||
|
||
def like_num(text):
|
||
if text.startswith(("+", "-", "±", "~")):
|
||
text = text[1:]
|
||
text = text.replace(", ", "").replace(".", "")
|
||
if text.isdigit():
|
||
return True
|
||
if text.count("/") == 1:
|
||
num, denom = text.split("/")
|
||
if num.isdigit() and denom.isdigit():
|
||
return True
|
||
if text.lower() in _num_words:
|
||
return True
|
||
return False
|
||
|
||
|
||
LEX_ATTRS = {NORM: norm, LIKE_NUM: like_num}
|