spaCy/spacy/lang/ne/lex_attrs.py

99 lines
3.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding: utf8
from __future__ import unicode_literals
from ..norm_exceptions import BASE_NORMS
from ...attrs import NORM, LIKE_NUM
# fmt: off
_stem_suffixes = [
["", "ि", "", "", "", "", "", "", "", ""],
["", "", "", ""],
["लाई", "ले", "बाट", "को", "मा", "हरू"],
["हरूलाई", "हरूले", "हरूबाट", "हरूको", "हरूमा"],
["इलो", "िलो", "नु", "ाउनु", "", "इन", "इन्", "इनन्"],
["एँ", "इँन्", "इस्", "इनस्", "यो", "एन", "यौं", "एनौं", "", "एनन्"],
["छु", "छौँ", "छस्", "छौ", "", "छन्", "छेस्", "छे", "छ्यौ", "छिन्", "हुन्छ"],
["दै", "दिन", "दिँन", "दैनस्", "दैन", "दैनौँ", "दैनौं", "दैनन्"],
["हुन्न", "न्न", "न्न्स्", "न्नौं", "न्नौ", "न्न्न्", "िई"],
["", "", "", "अरी", "साथ", "वित्तिकै", "पूर्वक"],
["याइ", "ाइ", "बार", "वार", "चाँहि"],
["ने", "ेको", "ेकी", "ेका", "ेर", "दै", "तै", "िकन", "", "", "नन्"]
]
# fmt: on
# reference 1: https://en.wikipedia.org/wiki/Numbers_in_Nepali_language
# reference 2: https://www.imnepal.com/nepali-numbers/
_num_words = [
"शुन्य",
"एक",
"दुई",
"तीन",
"चार",
"पाँच",
"",
"सात",
"आठ",
"नौ",
"दश",
"एघार",
"बाह्र",
"तेह्र",
"चौध",
"पन्ध्र",
"सोह्र",
"सोह्र",
"सत्र",
"अठार",
"उन्नाइस",
"बीस",
"तीस",
"चालीस",
"पचास",
"साठी",
"सत्तरी",
"असी",
"नब्बे",
"सय",
"हजार",
"लाख",
"करोड",
"अर्ब",
"खर्ब",
]
def norm(string):
# normalise base exceptions, e.g. punctuation or currency symbols
if string in BASE_NORMS:
return BASE_NORMS[string]
# set stem word as norm, if available, adapted from:
# https://github.com/explosion/spaCy/blob/master/spacy/lang/hi/lex_attrs.py
# https://www.researchgate.net/publication/237261579_Structure_of_Nepali_Grammar
for suffix_group in reversed(_stem_suffixes):
length = len(suffix_group[0])
if len(string) <= length:
break
for suffix in suffix_group:
if string.endswith(suffix):
return string[:-length]
return string
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(", ", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text.lower() in _num_words:
return True
return False
LEX_ATTRS = {NORM: norm, LIKE_NUM: like_num}