spaCy/spacy/lang/bn/__init__.py

48 lines
1.1 KiB
Python

from typing import Optional, Callable
from thinc.api import Model
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from .stop_words import STOP_WORDS
from ...language import Language
from ...pipeline import Lemmatizer
class BengaliDefaults(Language.Defaults):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
suffixes = TOKENIZER_SUFFIXES
infixes = TOKENIZER_INFIXES
stop_words = STOP_WORDS
class Bengali(Language):
lang = "bn"
Defaults = BengaliDefaults
@Bengali.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "rule",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
overwrite: bool,
scorer: Optional[Callable],
):
return Lemmatizer(
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
)
__all__ = ["Bengali"]